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Introduction to modeling

The premise to all modeling is that, based on experimental
observations, we believe that a set of rules gobvern the behavior of a
system. Modeling the behavior of such a system involves the
elucidation of the rules that govern the system to understand our
observations and the use of such rules to further predict the
behavior of a system under a range of conditions. Thus, models can be
used to both explain or predict the behavior of a system given a
set of conditions. The best models can perform both tasks
satisfactorily. A simple example is the colloquial story of Newton’s
apple. The observation was that the apple fell on Newton’s head. He
derived the simple yet incredibly powerful [image: F=ma] whereby he
observed that the Force, [image: F], applied to an object of mass,
:mass:`m`, resulted in an acceleration, [image: a]. We now know that
this model holds for most conditions in every-day activities but we
know that it fails for e.g. relativistic effects. Therefore a model
has a domain of application and a limited usefulness. However, a
successful model can be employed accurately for both the explanation
and the prediction of a system. In the case of cell-molecular biology,
we aim to develop models that describe the behavior of cellular
systems. The model can guide us to understand what are our gaps in the
observations that prevent us from generalizing a theory and, when they
capture the key significant aspects of the behavior of a system,
predict the outcome of the behavrio of a system under a given set of
conditions.




PySB as modeling tool

PySB is a set of software tools that enables users to develop,
implement, and execute biological models in the Python programming
environment. One of the main advantages of PySB is that it leverages
the power of a very powerful programming language to express
biological concepts as parts of a program. The properties of the
programming environment are therefore the same properties found in
PySB. Python is an object-oriented programming language that provides
a useful environment for programming techniques such as data
abstraction, encapsulation, modularity, message-passing, polymorphism,
and inheritance to name a few. In addition to these technical
advantages, we chose Python due to its readable and clear syntax. In
our view, one of the most difficult issues with current biological
modeling is shareability and transparency, both of which are
addresssed, at least in part, by a clear syntax and a programmatic
flow of ideas. PySB can handle simple models, modular models, and
multiple instances of models, as shown in the tutorial. We invite
users to contribute and share their innovations and ideas to make PySB
a better open-source tool for the programming community.


A quick example

Using and running PySB can be as simple as typing the following
commands in your Python shell. Go to the directory containing the file
simplemodel.py (usually pysb/examples) and try this at your shell!:

[host] > python earm_figures.py



You will see some feedback from the machine, depending on your
operating system (and assuming PySB is correctly installed). After a
few seconds of calculations you should get two figures. The first
figure shows the experimental death time determined form experiments
(as dots with error bars) followed by the model-predicted average
(solid line) and the standard deviation ranges (dashed lines). The
second graph will show you the model signatures of three species,
namely initiator caspase (IC) substrate, effector caspase (EC)
substrate, and mitochondrial outer membrane permeabilization (MOMP) as
indicated by release of Smac to the cytosol. You have now run a model!
Feel free to open the files earm_1_0.py to see a simple model
instantiation and earm_figures.py to see how the model is run
and the figures are generated. If you want to learn how to build
biological models in a systematic (and we think fun) way, visit our
Tutorial.




Conversion from other modeling tools

What should we say here?
Here we give some pointers for people coming from SBML, BNG/Kappa,
Matlab, etc. in order to start converting their models and scripts to
work with PySB.  Mostly just a list of resources, not full
explanations.  This will help assure users of those tools that they
can relatively easily carry over their current modeling investments.
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Getting Started


Python Knowledge

For those unfamiliar with Python we strongly rogramming needs.


	Quick Python Overview (10 minutes or so):

	
	OpenOpt Python for the impatient [http://openopt.org/PythonIntroduction]

	Instant Python [http://hetland.org/writing/instant-python.html]





	Python for beginners, experienced users, or if you want a refresher:

	
	Official Python tutorial [http://docs.python.org/tutorial/]

	Python for non-programmers [http://wiki.python.org/moin/BeginnersGuide/NonProgrammers]

	Dive into Python [http://www.diveintopython.net/]

	Thinking in Python [http://www.mindview.net/Books/TIPython]

	





	For experienced users of other languages:

	
	
	NumPy for Matlab [http://www.scipy.org/NumPy_for_Matlab_Users/]

	
	Also the Mathesaurus [http://mathesaurus.sourceforge.net/matlab-numpy.html]

	Matlab commands in Numerical Python cheatsheet [http://mathesaurus.sourceforge.net/matlab-python-xref.pdf]









	Scientific Python [http://www.scipy.org/]












Requirements

The following are what we consider the necessary to use PySB as a
biological simulation tool. The versions listed are the ones that are
known to work well with the material in this documentation. Later
versions should work and earlier versions might work. Advanced
users may want to replace these requirements as they see fit.


	Python 2.7: You will need a version of the Python interpreter in your
machine.

	NumPy 1.7: You may not need NumPy for simple model building but you will
want to have it for any sort of numerical manipulation of your
model. The work presented here has been carried out using NumPy 1.7
or later.

	SymPy 0.7: Like NumPy, you may not need SymPy to carry out simple
model building and instantiation but if you want to run numerical
simulation,s SymPy will be a required tool for symbolic math manipulation.

	BioNetGen 2.1.8: The Biological Network Generator is a very useful tool
for rules-based modeling. It is a very powerful and useful package
for modeling and simulation of biological systems and provides a set
of useful tools that could be used with PySB. As of now, PySB uses
BioNetGen as a tool to generate the reaction connectivity network
using its robust engine. If you want to generate biochemical
representations of a biological system, you will need
BioNetGen. BioNetGen depends on Perl 2, so you will need that as
well.

	SciPy 0.10: Scientific Python provides a suite of extremely useful
tools for scientific computing in the Python environment. For
example, SciPy provides the LSODA integrator interface that we use
in PySB.

	MatPlotLib 1.2 (PyLab): This package provides a very useful
interface for generation, manipulation, export, etc of plots in two
and three dimensions. If you want to visualize any type of plots you
will need MatPlotLib.






Recommended


	iPython 0.13: Even though iPython is not a requirement it is
strongly recommended. iPython provides a very nice and simple
shell interface for the Python interpreter with such niceties as tab
completion, object exploration, running and editing from the shell,
debugging, and history to name a few. You want this.

	KaSim/Kappa : This wonderful rules-based package can be run natively
from PySB to take advantage of its stochastic simulation
capabilities and great visualization tools. It is a great complement
to the modeling tools in BioNetGen.

	cookbooks
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Tutorial

This tutorial will walk you through the creation of your first PySB
model. It will cover the basics, provide a guide through the different
programming constructs and finally deal with more complex
rule-building. Users will be able to write simple programs after
finishing this section. In what follows we will assume you are
issuing commands from a Python prompt (whether it be actual Python
or a shell such as iPython. See Getting Started for details).


Note

Familiarity with rules-based biomodel encoding tools such as
BioNetGen [http://bionetgen.org/index.php/Documentation] or Kappa [http://www.kappalanguage.org/documentation] would be useful to users unfamiliar with
Rules-based approaches to modeling. A short Rules Primer
is included for new users.




Note

Although a new user can go through the tutorial to
understand how PySB works, a basic understanding of the Python
programming language is essential. See the Getting Started
section for some Python suggestions.




Modeling with PySB

A biological model in PySB will need the following components to
generate a mathematical representation of a system:


	Model definitions: This instantiates the model object.

	Monomer definition: This instantiates the monomers that are allowed
in the model.

	Parameters: These are the numerical parameters needed to create a
mass-action or stochastic simulation.

	Rules: These are the set of statements that describe how monomer
species, interact as prescribed by the parameters involved in a
given rule. The collection of these rules is called the model
topology.



The following examples will be taken from work in the Sorger lab [http://sorger.med.harvard.edu/] in
extrinsic apoptosis signaling [http://www.plosbiology.org/article/info%3Adoi%2F10.1371%2Fjournal.pbio.0060299]. The initiator caspases, activated by
an upstream signal, play an essential role activating the effector
Bcl-2 proteins downstream. In this model, Bid is catalitically
truncated and activated by Caspase-8, an initiator caspase. We will
build a model that represents this activation as a two-step process as
follows:


[image: C8 + Bid \underset{kr}{\overset{kf}{\leftrightharpoons}} C8:Bid \quad {\longleftarrow \mbox{Complex formation step}} \\ C8:Bid \overset{kc}{\rightarrow} C8 + tBid \quad {\longleftarrow \mbox{Complex dissociation step}}]


Where tBid is the truncated Bid. The parameters kf, kr, and
kc represent the forward, reverse, and catalytic rates that
dictate the consumption of Bid via catalysis by C8 and the formation
of tBid. We will eventually end up with a mathematical representation
that will look something like this:


(1)[image: \frac{d[C8]}{dt}     &= -kf[C8]*[Bid] + kr*[C8:Bid] + kc*[C8:Bid] \\ \frac{d[Bid]}{dt}    &= -kf*[C8]*[Bid] + kr*[C8:Bid] \\ \frac{d[C8:Bid]}{dt} &=  kf*[C8]*[Bid] - kr*[C8:Bid] - kc*[C8:Bid] \\ \frac{dt[tBid]}{dt}  &=  kc*[C8:Bid]]


The species names in square braces represent concentrations, usually
give in molar (M) and time in seconds. These ordinary differential
equations (ODEs) will then be integrated numerically to obtain the
evolution of the system over time. We will explore how a model could
be instantiated, modified, and expanded without having to resort to
the tedious, repetitive, and error-prone writing and rewriting of
equations as those listed above.




The Empty Model

We begin by creating a model, which we will call mymodel. Open your
favorite Python code editor and create a file called
mymodel.py. The first lines of a PySB program must contain
these lines so you can type them or paste them in your editor as shown
below. Comments in the Python language are denoted by a hash (#)
in the first column.

# import the pysb module and all its methods and functions
from pysb import *

# instantiate a model
Model()





Now we have the simplest possible model – the empty model!

To verify that your model is valid and your PySB installation is
working, run mymodel.py through the Python interpreter by
typing the following command at your command prompt:

python mymodel.py



If all went well, you should not see any output. This is to be
expected, because this PySB script defines a model but does not
execute any contents. We will revisit these concepts once we have
added some components to our model.




Monomers

Chemical species in PySB, whether they are small molecules,
proteins, or representations of many molecules are all derived from
Monomers. Monomers are the superunit that defines how a species
can be defined and used. A Monomer is defined using the keyword
Monomer followed by the desired monomer name and the sites
relevant to that monomer. In PySB, like in BioNetGen [http://bionetgen.org/index.php/Documentation] or Kappa [http://www.kappalanguage.org/documentation],
there are two types of sites, namely bond-making/breaking sites and
state sites. The former allow for the description of bonds between
species while the latter allow for the assignment of states to
species. Following the first lines of code entered into your model in
the previous section we will add a monomer named ‘Bid’ with a bond
site ‘b’ and a state site ‘S’. The state site will contain two states,
the untruncated (u) state and the truncated (t) state as shown:

Monomer('Bid', ['b', 'S'], {'S':['u', 't']})





Note that this looks like a Python function call.  This is because it
is in fact a Python function call! [1] The first argument to
the function is a string (ecnlosed in quotation marks) specifying the
monomer’s name and the second argument is a list of strings specifying
the names of its sites. Note that a monomer does not need to have
state sites. There is also a third, optional argument for
specifying whether any of the sites are “state sites” and the list of
valid states for those sites.  We will introduce state sites later.

Let’s define two monomers in our model, corresponding to Caspase-8, an
initiator caspase involved in apoptosis (C8) and BH3-interacting domain death
agonist (Bid) (ref?):

Monomer('C8', ['b'])
Monomer('Bid', ['b', 'S'])





Note that although the C8 monomer only has one site ‘b’, you must
still use the square brackets to indicate a list of binding
sites. Anticipating what comes below, the 'S' site will become a
state site and hence, we choose to represent it in upper case but this
is not mandatory.

Now our model file should look like this:

# import the pysb module and all its methods and functions
from pysb import *

# instantiate a model
Model()

# declare monomers
Monomer('C8', ['b'])
Monomer('Bid', ['b', 'S'], {'S':['u', 't']})





We can run python mymodel.py again and verify there are no errors,
but you should still have not output given that we have not done
anything with the monomers. Now we can do something with them.

Run the ipython (or python) interpreter with no arguments to enter
interactive mode (be sure to do this from the same directory where
you’ve saved mymodel.py) and run the following code:

>>> import mymodel as m
>>> m.model.monomers





You should see the following output:

Monomer(name='C8', sites=['b'], site_states={})
Monomer(name='Bid', sites=['b', 'S'], site_states={})





In the first line, we treat mymodel.py as a module [2]
and import its symbol model.  In the second and third lines, we
loop over the monomers attribute of model, printing each
element of that list.  The output for each monomer is a more verbose,
explicit representation of the same call we used to define it. [3]

Here we can start to see how PySB is different from other modeling
tools.  With other tools, text files are typically created with a
certain syntax, then passed through an execution tool to perform a
task and produce an output, whether on the screen or to an output
file.  In PySB on the other hand we write Python code defining our
model in a regular Python module, and the elements we define in that
module can be inspected and manipulated as Python objects
interactively in one of the Python REPLs such as iPython or
Python. We will explore this concept in more detail in the next
section, but for now we will cover the other types components needed
to create a working model.




Parameters

A Parameter is a named constant floating point number used as a
reaction rate constant, compartment volume or initial (boundary)
condition for a species (parameter in BNG). A parameter is defined
using the keyword Parameter followed by its name and value. Here
is how you would define a parameter named ‘kf1’ with the value
[image: 4 \times 10^{-7}]:

Parameter('kf1', 4.0e-7)





The second argument may be any numeric expression, but best practice
is to use a floating-point literal in scientific notation as shown in
the example above. For our model we will need three parameters, one
each for the forward, reverse, and catalytic reactions in our
system. Go to your mymodel.py file and add the lines
corresponding to the parameters so that your file looks like this:

# import the pysb module and all its methods and functions
from pysb import *

# instantiate a model
Model()

# declare monomers
Monomer('C8', ['b'])
Monomer('Bid', ['b', 'S'], {'S':['u', 't']})

# input the parameter values
Parameter('kf', 1.0e-07)
Parameter('kr', 1.0e-03)
Parameter('kc', 1.0)





Once this is done start the ipython (or python) intepreter and
enter the following commands:

>>> import mymodel as m
>>> m.model.parameters





and you should get an output such as:

{'kf': Parameter(name='kf', value=1.0e-07),
 'kr': Parameter(name='kr', value=1.0e-03),
 'kc': Parameter(name='kc', value=1.0    )}





Your model now has monomers and parameters specified. In the next
section we will specify rules, which specify the interaction between
species and parameters.


Warning

PySB or the integrators that we suggest for use for numerical
manipulation do not keep track of units for the user. As such, the
user is responsible for keeping track of the model in units that
make sense to the user! For example, the forward rates are
typically in [image: M^{-1}s^{-1}], the reverse rates in
[image: s^{-1}], and the catalytic rates in [image: s^{-1}]. For the
present examples we have chosen to work in a volume size of
[image: 1.0 pL] corresponding to the volume of a cell and to specify
the Parameters and Initial conditions in numbers of molecules
per cell. If you wish to change the units you must change all the
parameter values accordingly.






Rules

Rules, as described in this section, comprise the basic elements of
procedural instructions that encode biochemical interactions. In its
simplest form a rule is a chemical reaction that can be made general
to a range of monomer states or very specific to only one kind of
monomer in one kind of state. We follow the style for writing rules as
described in BioNetGen [http://bionetgen.org/index.php/Documentation] but the style proposed by Kappa [http://www.kappalanguage.org/documentation] is quite
similar with only some differences related to the implementation
details (e.g. mass-action vs. stochastic simulations, compartments or
no compartments, etc). We will write two rules to represent the
interaction between the reactants and the products in a two-step
manner as described in the `Basic rule-based modeling and PySB`_
section.

The general pattern for a rule consists of the statement Rule and in
parenthesis a series of statements separated by commas, namely the
rule name (string), the rule interactions, and the rule
parameters. The rule interactions make use of the following
operators:

*+* operator to represent complexation
*<>* operator to represent backward/forward reaction
*>>* operator to represent forward-only reaction
*%* operator to represent a binding interaction between two species



To illustrate the use of the operators and the rule syntax we write
the complex formation reaction with labels illustrating the parts of
the rule:

Rule('C8_Bid_bind', C8(b=None) + Bid(b=None, S='u') <> C8(b=1) % Bid(b=1, S='u'), *[kf, kr])
          |              |     |           |         |     |    |     |             |
          |              |     |           |         |     |    |     |            parameter list
          |              |     |           |         |     |    |     |
          |              |     |           |         |     |    |    bound species
          |              |     |           |         |     |    |
          |              |     |           |         |     |   binding operator
          |              |     |           |         |     |
          |              |     |           |         |    bound species
          |              |     |           |         |
          |              |     |           |        forward/backward operator
          |              |     |           |
          |              |     |          unbound species
          |              |     |
          |              |    complexation / addition operator
          |              |
          |             unbound species
         rule name



The rule name can be any string and should be enclosed in single (‘)
or double (”) quotation marks. The species are instances of the
mononmers in a specific state. In this case we are requiring that C8
and Bid are both unbound, as we would not want any binding to occur
with species that are previously bound. The complexation or
addition operator tells the program that the two species are being
added, that is, undergoing a transition, to form a new species as
specified on the right side of the rule. The forward/backward
operator states that the reaction is reversible. Finally the binding
operator indicates that there is a bond formed between two or more
species. This is indicated by the matching integer (in this case 1)
in the bonding site of both species along with the binding
operator. If a non-reversible rule is desired, then the forward-only
operator can be relplaced for the forward/backward operator.

In order to actually change the state of the Bid protein we must now
edit the monomer so that have an acutal state site as follows:

Monomer('Bid', ['b', 'S'], {'S':['u', 't']})





Having added the state site we can now further specify the state of
the Bid protein whe it undergoes rule-based interactions and
explicitly indicate the changes of the protein state.

With this state site added, we can now go ahead and write the rules
that will account for the binding step and the unbinding step as
follows:

Rule('C8_Bid_bind', C8(b=None) + Bid(b=None, S='u') <>C8(b=1) % Bid(b=1, S='u'), kf, kr)
Rule('tBid_from_C8Bid', C8(b=1) % Bid(b=1, S='u') >> C8(b=None) % Bid(b=None, S='t'), kc)





As shown, the initial reactants, C8 and Bid initially in the
unbound state and, for Bid, in the ‘u’ state, undergo a complexation
reaction and further a dissociation reaction to return the original
C8 protein and the Bid protein but now in the ‘t’ state,
indicating its truncation. Make these additions to your
mymodel.py file. After you are done, your file should look
like this:

# import the pysb module and all its methods and functions
from pysb import *

# instantiate a model
Model()

# declare monomers
Monomer('C8', ['b'])
Monomer('Bid', ['b', 'S'], {'S':['u', 't']})

# input the parameter values
Parameter('kf', 1.0e-07)
Parameter('kr', 1.0e-03)
Parameter('kc', 1.0)

# now input the rules
Rule('C8_Bid_bind', C8(b=None) + Bid(b=None, S=None) <> C8(b=1) % Bid(b=1, S=None), kf, kr) 
Rule('tBid_from_C8Bid', C8(b=1) % Bid(b=1, S='u') >> C8(b=None) + Bid(b=None, S='t'), kc)





Once you are done editing your file, start your ipython (or
python) interpreter and type the commands at the prompts below. Once
you load your model you should be able to probe and check that you
have the correct monomers, parameters, and rules. Your output should
be very similar to the one presented (output shown below the '>>>'
python prompts).:

>>> import mymodel as m
>>> m.model.monomers
   {'C8': Monomer(name='C8', sites=['b'], site_states={}),
   'Bid': Monomer(name='Bid', sites=['b', 'S'], site_states={'S': ['u', 't']})}
>>> model.parameters
   {'kf': Parameter(name='kf', value=1.0e-07),
    'kr': Parameter(name='kr', value=1.0e-03),
    'kc': Parameter(name='kc', value=1.0    )}
>>> m.model.rules
   {'C8_Bid_bind': Rule(name='C8_Bid_bind', reactants=C8(b=None) +
   Bid(b=None, S='u'), products=C8(b=1) % Bid(b=1, S='u'),
   rate_forward=Parameter(name='kf', value=1.0e-07),
   rate_reverse=Parameter(name='kr', value=1.0e-03)),
   'tBid_from_C8Bid': Rule(name='tBid_from_C8Bid', reactants=C8(b=1) %
   Bid(b=1, S='u'u), products=C8(b=None) + Bid(b=None, S=t),
   rate_forward=Parameter(name='kc', value=1.0))}





With this we are almost ready to run a simulation, all we need now is
to specify the initial conditions of the system.




Initial conditions

Having specified the monomers, the parameters and the rules we
have the basics of what is needed to generate a set of ODEs and run a
model. From a mathematical perspective a system of ODEs can only be
solved if a bound is placed on the ODEs for integration. In our case,
these bounds are the initial conditions of the system that indicate
how much non-zero initial species are present at time t=0s in the
system. In our system, we only have two initial species, namely C8
and Bid so we need to specify their initial concentrations. To do
this we enter the following lines of code into the mymodel.py
file:

Parameter('C8_0', 1000)
Parameter('Bid_0', 10000)
Initial(C8(b=None), C8_0)
Initial(Bid(b=None, S='u'), Bid_0)





A parameter object must be declared to specify the initial condition
rather than just giving a value as shown above. Once the parameter
object is declared (i.e. C8_0 and Bid_0) it can be fed to the
Initial definition. Now that we have specified the initial
conditions we are basically ready to run simulations. We will add an
observables call in the next section prior to running the
simulation.




Observables

In our model we have two initial species (C8 and Bid) and one
output species (tBid). As shown in the (1) derived from the
reactions above, there are four mathematical species needed to
describe the evolution of the system (i.e. C8, Bid, tBid, and
C8:Bid). Although this system is rather small, there are situations
when we will have many more species than we care to monitor or
characterize throughout the time evolution of the (1). In
addition, it will often happen that the desirable species are
combinations or sums of many other species. For this reason the
rules-based engines we currently employ implemented the Observables
call which automatically collects the necessary information and
returns the desired species. In our case, we will monitor the amount
of free C8, unbound Bid, and active tBid. To specify the
observables enter the following lines in your mymodel.py file
as follows:

Observable('obsC8', C8(b=None))
Observable('obsBid', Bid(b=None, S='u'))
Observable('obstBid', Bid(b=None, S='t'))





As shown,the observable can be a species. As we will show later the
observable can also contain wild-cards and given the “don’t care don’t
write” approach to rule-writing it can be a very powerful approach to
observe activated complexes.




Simulation and analysis

By now your mymodel.py file should look something like this:

# import the pysb module and all its methods and functions
from pysb import *

# instantiate a model
Model()

# declare monomers
Monomer('C8', ['b'])
Monomer('Bid', ['b', 'S'], {'S':['u', 't']})

# input the parameter values
Parameter('kf', 1.0e-07)
Parameter('kr', 1.0e-03)
Parameter('kc', 1.0)

# now input the rules
Rule('C8_Bid_bind', C8(b=None) + Bid(b=None, S=None) <> C8(b=1) % Bid(b=1, S=None), *[kf, kr]) 
Rule('tBid_from_C8Bid', C8(b=1) % Bid(b=1, S='u') >> C8(b=None) + Bid(b=None, S='t'), kc)

# initial conditions
Parameter('C8_0', 1000)
Parameter('Bid_0', 10000)
Initial(C8(b=None), C8_0)
Initial(Bid(b=None, S='u'), Bid_0)

# Observables
Observable('obsC8', C8(b=None))
Observable('obsBid', Bid(b=None, S='u'))
Observable('obstBid', Bid(b=None, S='t'))





You can use a few commands to check that your model is defined
properly. Start your ipython (or python) interpreter and enter the
commands as shown below. Notice the output should be similar to the
one shown (output shown below the '>>>'` prompts):

>>> import mymodel as m
>>> m.model.monomers
   {'C8': Monomer(name='C8', sites=['b'], site_states={}),
    'Bid': Monomer(name='Bid', sites=['b', 'S'], site_states={'S': ['u', 't']})}
>>> m.model.parameters
   {'kf': Parameter(name='kf', value=1.0e-07),
    'kr': Parameter(name='kr', value=1.0e-03),
    'kc': Parameter(name='kc', value=1.0    ),
    'C8_0': Parameter(name='C8_0', value=1000),
    'Bid_0': Parameter(name='Bid_0', value=10000)}
>>> m.model.observables
   {'obsC8': <pysb.core.Observable object at 0x104b2c4d0>,
    'obsBid': <pysb.core.Observable object at 0x104b2c5d0>,
    'obstBid': <pysb.core.Observable object at 0x104b2c6d0>}
>>> m.model.initial_conditions
   [(C8(b=None), Parameter(name='C8_0', value=1000)), (Bid(b=None, S=u), Parameter(name='Bid_0', value=10000))]
>>> m.model.rules
   {'C8_Bid_bind': Rule(name='C8_Bid_bind', reactants=C8(b=None) +
   Bid(b=None, S=None), products=C8(b=1) % Bid(b=1, S=None),
   rate_forward=Parameter(name='kf', value=1.0e-07),    rate_reverse=Parameter(name='kr', value=1.0e-03)),
    'tBid_from_C8Bid': Rule(name='tBid_from_C8Bid', reactants=C8(b=1)
    % Bid(b=1, S=u), products=C8(b=None) + Bid(b=None, S=t),    rate_forward=Parameter(name='kc', value=1.0))}





With this we are now ready to run a simulation! The parameter values
for the simulation were taken directly from typical values in the
paper about extrinsic apoptosis signaling [http://www.plosbiology.org/article/info%3Adoi%2F10.1371%2Fjournal.pbio.0060299]. To run the simulation we
must use a numerical integrator. Common examples include LSODA, VODE,
CVODE, Matlab’s ode15s, etc. We will use two python modules that are
very useful for numerical manipulation. We have adapted the
integrators in the SciPy*[#sp]_ module to function seamlessly with
PySB for integration of ODE systems. We will also be using the *PyLab
[5] package for graphing and plotting from the command line.

We will begin our simulation by loading the model from the ipython
(or python) interpreter as shown below:

>>> import mymodel as m





You can check that your model imported correctly by typing a few
commands related to your model as shown:

>>> m.mymodel.monomers
>>> m.mymodel.rules





Both commands should return information about your model. (Hint: If
you are using iPython, you can press tab twice after “m.mymodel” to
tab complete and see all the possible options).

Now, we will import the PyLab and PySB integrator module. Enter
the commands as shown below:

>>> from pysb.integrate import odesolve
>>> import pylab as pl





We have now loaded the integration engine and the graph engine into
the interpreter environment. You may get some feedback from the
program as some functions can be compiled at runtime for speed,
depending on your operating system.Next we need to tell the integrator
the time domain over which we wish to integrate the equations. For our
case we will use [image: 20000s] of simulation time. To do this we
generate an array using the linspace function from PyLab. Enter
the command below:

>>> t = pl.linspace(0, 20000)





This command assigns an array in the range [image: [0..20000]] to the
variable t. You can type the name of the variable at any time to see
the content of the variable. Typing the variable t results in the
following:

>>> t
array([     0.        ,    408.16326531,    816.32653061,   1224.48979592,
         1632.65306122,   2040.81632653,   2448.97959184,   2857.14285714,
         3265.30612245,   3673.46938776,   4081.63265306,   4489.79591837,
         4897.95918367,   5306.12244898,   5714.28571429,   6122.44897959,
         6530.6122449 ,   6938.7755102 ,   7346.93877551,   7755.10204082,
         8163.26530612,   8571.42857143,   8979.59183673,   9387.75510204,
         9795.91836735,  10204.08163265,  10612.24489796,  11020.40816327,
        11428.57142857,  11836.73469388,  12244.89795918,  12653.06122449,
        13061.2244898 ,  13469.3877551 ,  13877.55102041,  14285.71428571,
        14693.87755102,  15102.04081633,  15510.20408163,  15918.36734694,
        16326.53061224,  16734.69387755,  17142.85714286,  17551.02040816,
        17959.18367347,  18367.34693878,  18775.51020408,  19183.67346939,
        19591.83673469,  20000.        ])





These are the points at which we will get data for each ODE from the
integrator. With this, we can now run our simulation. Enter the
following commands to run the simulation:

>>> yout = odesolve(m.model, t)





To verify that the simulation run you can see the content of the
yout object. For example, check for the content of the Bid
observable defined previously:

>>> yout['obsBid']
array([ 10000.        ,   9601.77865674,   9224.08135988,   8868.37855506,
         8534.45591732,   8221.19944491,   7927.08884234,   7650.48970981,
         7389.81105408,   7143.5816199 ,   6910.47836131,   6689.32927828,
         6479.10347845,   6278.89607041,   6087.91189021,   5905.45001654,
         5730.89003662,   5563.68044913,   5403.32856328,   5249.39176146,
         5101.47069899,   4959.20384615,   4822.26262101,   4690.34720441,
         4563.18294803,   4440.51745347,   4322.11815173,   4207.77021789,
         4097.27471952,   3990.44698008,   3887.11517373,   3787.11923497,
         3690.30945136,   3596.54594391,   3505.69733323,   3417.64025401,
         3332.25897699,   3249.44415872,   3169.09326717,   3091.10923365,
         3015.40034777,   2941.87977234,   2870.4652525 ,   2801.07879018,
         2733.64632469,   2668.09744369,   2604.36497901,   2542.38554596,
         2482.09776367,   2423.44473279])





As you may recall we named some observables in the Observables
section above. The variable yout contains an array of all the ODE
outputs from the integrators along with the named observables
(i.e. obsBid, obstBid, and obsC8) which can be called by their
names. We can therefore plot this data to visualize our output. Using
the commands imported from the PyLab module we can create a graph
interactively. Enter the commands as shown below:

>>>pl.ion()
>>>pl.figure()
>>>pl.plot(t, yout['obsBid'], label="Bid")
>>>pl.plot(t, yout['obstBid'], label="tBid")
>>>pl.plot(t, yout['obsC8'], label="C8")
>>>pl.legend()
>>>pl.xlabel("Time (s)")
>>>pl.ylabel("Molecules/cell")
>>>pl.show()





You should now have a figure in your screen showing the number of
Bid molecules decreaing from the initial amount decreasing over
time, the number of tBid molecules increasing over time, and the
number of free C8 molecules decrease to about half. For help with
the above commands and to see more commands related to PyLab check
the documentation [5]. Your figure should look something like the
one below:

[image: mymodel figure]
Congratulations! You have created your first model and run a
simulation!






Advanced modeling

In this section we continue with the above tutorial and touch on some
advanced techniques for modeling using compartments, the definition of
higher order rules using functions, and model calibration using the
PySB utilities. Although we provide the functions and utilities we
have found useful for the community, we encourage users to customize
the modeling tools to their needs and add/contribute to the PySB
modeling community.


Higher-order rules

For this section we will show the power working in a programming
environment by creating a simple function called “catalyze”. Catalysis
happens quite often in models and it is one of the basic functions we
have found useful in our model development. Rather than typing many
lines such as:

Rule("association",  Enz(b=None) + Sub(b=None, S="i") <> Enz(b=1)%Sub(b=1,S="i"), kf, kr)
Rule("dissociation", Enz(b=1)%Sub(b=1,S="i") >> Enz(b=None) + Sub(b=None, S="a"), kc)





multiple times, we find it more powerful, transparent and easy to
instantiate/edit a simple, one-line function call such as:

catalyze(Enz, Sub, "S", "i", "a", kf, kr, kc)





We find that the functional form captures what we mean to write: a
chemical species (the substrate) undergoes catalytic activation (by
the enzyme) with a given set of parameters. We will now describe how a
function can be written in PySB to automate the scripting of simple
concepts into a programmatic format. Examine the function below:

def catalyze(enz, sub, site, state1, state2, kf, kr, kc):   # (0) function call
    """2-step catalytic process"""                          # (1) reaction name
    r1_name = '%s_assoc_%s' % (enz.name, sub.name)          # (2) name of association reaction for rule
    r2_name = '%s_diss_%s' % (enz.name, sub.name)           # (3) name of dissociation reaction for rule
    E = enz(b=None)                                         # (4) define enzyme state in function
    S = sub({'b': None, site: state1})                      # (5) define substrate state in function
    ES = enz(b=1) % sub({'b': 1, site: state1})             # (6) define state of enzyme:substrate complex
    P = sub({'b': None, site: state2})                      # (7) define state of product
    Rule(r1_name, E + S <> ES, kf, kr)                      # (8) rule for enzyme + substrate association (bidirectional)
    Rule(r2_name, ES >> E + P, kc)                          # (9) rule for enzyme:substrate dissociation  (unidirectional)





As shown it takes about ten lines to write the catalyze function
(shorter variants are certainly possible with more advanced Python
statements). The skeleton of every function in Python

As shown, Monomers, Parameters, Species, and pretty much
anything related to rules-based modeling are instantiated as objects
in Python. One could write functions to interact with these objects
and they could be instantiated and inherit methods from a class. The
limits to programming biology with PySB are those enforced by the
Python language itself. We can now go ahead and embed this into a
model. Go back to your mymodel.py file and modify it to look
something like this:

# import the pysb module and all its methods and functions
from pysb import *


def catalyze(enz, sub, site, state1, state2, kf, kr, kc):   # function call
    """2-step catalytic process"""                          # reaction name
    r1_name = '%s_assoc_%s' % (enz.name, sub.name)           # name of association reaction for rule
    r2_name = '%s_diss_%s' % (enz.name, sub.name)           # name of dissociation reaction for rule
    E = enz(b=None)                                         # define enzyme state in function
    S = sub({'b': None, site: state1})                      # define substrate state in function
    ES = enz(b=1) % sub({'b': 1, site: state1})             # define state of enzyme:substrate complex
    P = sub({'b': None, site: state2})                      # define state of product
    Rule(r1_name, E + S <> ES, kf, kr)                      # rule for enzyme + substrate association (bidirectional)
    Rule(r2_name, ES >> E + P, kc)                          # rule for enzyme:substrate dissociation  (unidirectional)
   
# instantiate a model
Model()

# declare monomers
Monomer('C8', ['b'])
Monomer('Bid', ['b', 'S'], {'S':['u', 't']})

# input the parameter values
Parameter('kf', 1.0e-07)
Parameter('kr', 1.0e-03)
Parameter('kc', 1.0)

# OLD RULES
# Rule('C8_Bid_bind', C8(b=None) + Bid(b=None, S=None) <> C8(b=1) % Bid(b=1, S=None), *[kf, kr]) 
# Rule('tBid_from_C8Bid', C8(b=1) % Bid(b=1, S='u') >> C8(b=None) + Bid(b=None, S='t'), kc)
#
# NEW RULES
# Catalysis
catalyze(C8, Bid, 'S', 'u', 't', kf, kr, kc)


# initial conditions
Parameter('C8_0', 1000)
Parameter('Bid_0', 10000)
Initial(C8(b=None), C8_0)
Initial(Bid(b=None, S='u'), Bid_0)

# Observables
Observable('obsC8', C8(b=None))
Observable('obsBid', Bid(b=None, S='u'))
Observable('obstBid', Bid(b=None, S='t'))





With this you should be able to execute your code and generate figures
as described in the previous sections.




Using provided macros

For further reference we invite the users to explore the
macros.py file in the .../pysb/ directory. Based on
our experience with modeling signal transduction pathways we have
identified a set of commonly-used constructs that can serve as
building blocks for more complex models. In addition to some
meta-macros useful for instantiating user macros, we provide a set of
macros such as equilibrate. bind, catalyze,
catalyze_one_step, catalyze_one_step_reversible,
synthesize, degrade, assemble_pore_sequential, and
pore_transport. In addition to these basic macros we also provide
the higher-level macros bind_table and catalyze_table which we
have found useful in instantiating the interactions between families
of models.

In what follows we expand our previous model example of Caspase-8
by adding a few more species. The initiator caspase, as was described
earlier, catalytically cleaves Bid to create truncated Bid
(tBid) in this model. This tBid then catalytically activates
Bax and Bak which eventually go on to form pores at the mitochondria
leading to mitochondrial outer-membrane permeabilization (MOMP) and eventual
cell death. To introduce the concept of higher-level macros we will
show how the bind_table macro can be used to show how a family of
inhibitors, namely Bcl-2, Bcl-xL, and Mcl-1 inhibits a
family of proteins, namely Bid, Bax, and Bak.

In your favorite editor, go ahead and create a file (I will refer to
it as ::file::mymodel_fxns). Many rules that dictate the
interactions among species depend on a single binding site. We will
begin by creating our model and declaring a generic binding site. We
will also declare some functions, using the PySB macros and tailor
them to our needs by specifying the binding site to be passed to the
function. The first thing we do is import PySB and then import PySB
macros. Then we declare our generic site and redefine the pysb.macros
for our model as follows:

# import the pysb module and all its methods and functions
from pysb import *
from pysb.macros import *

# some functions to make life easy
site_name = 'b'
def catalyze_b(enz, sub, product, klist):
    """Alias for pysb.macros.catalyze with default binding site 'b'.
    """
    return catalyze(enz, site_name, sub, site_name, product, klist)
def bind_table_b(table):
    """Alias for pysb.macros.bind_table with default binding sites 'bf'.
    """
    return bind_table(table, site_name, site_name)





The first two lines just import the necessary modules from PySB. The
catalyze_b` function, tailored for the model, takes four inputs
but feeds six inputs to the pysb.macros.catalyze function, hence
making the model more clean. Similarly the bind_table_b function
takes only one entry, a list of lists, and feeds the entries needed to
the pysb.macros.bind_table macro. Note that these entries could be
contained in a header file to be hidden from the user at model time.

With this technical work out of the way we can now actually start our
mdoel building. We will declare two sets of rates, the bid_rates
that we will use for all the Bid interactions and the
bcl2_rates which we will use for all the Bcl-2
interactions. Thesevalues could be specified individually as desired
as desired but it is common practice in models to use generic values
for the reaction rate parameters of a model and determine these in
detail through some sort of model calibration. We will use these
values for now for illustrative purposes.

The next entries for the rates, the model declaration, and the
Monomers follow:

# Bid activation rates
bid_rates = [        1e-7, 1e-3, 1] #

# Bcl2 Inhibition Rates
bcl2_rates = [1.428571e-05, 1e-3] # 1.0e-6/v_mito

# instantiate a model
Model()

# declare monomers
Monomer('C8',    ['b'])
Monomer('Bid',   ['b', 'S'], {'S':['u', 't', 'm']})
Monomer('Bax',   ['b', 'S'], {'S':['i', 'a', 'm']})
Monomer('Bak',   ['b', 'S'], {'S':['i', 'a']})
Monomer('BclxL', ['b', 'S'], {'S':['c', 'm']})
Monomer('Bcl2', ['b'])
Monomer('Mcl1', ['b'])





As shown, the generic rates are declared followed by the declaration
of the monomers. We have the C8 and Bid monomers as we did in
the initial part of the tutorial, the MOMP effectors Bid, Bax,
Bak, and the MOMP inhibitors Bcl-xL, Bcl-2, and
Mcl-1. The Bid, Bax, and BclxL monomers, in addition
to the active and inactive terms also have a 'm' term indicating
that they can be in a membrane, which in this case we indicate as a
state. We will have a translocation to the membrane as part of the
reactions.

We can now begin to write some checmical procedures. The
first procedure is the catalytic activation of Bid by C8. This
is followed by the catalytic activation of Bax and Bak.

# Activate Bid
catalyze_b(C8, Bid(S='u'), Bid(S='t'), [KF, KR, KC])

# Activate Bax/Bak
catalyze_b(Bid(S='m'), Bax(S='i'), Bax(S='m'), bid_rates)
catalyze_b(Bid(S='m'), Bak(S='i'), Bak(S='a'), bid_rates)





As shown, we simply state the soecies that acts as an enzyme as the
first function argument, the species that acts as the reactant with
the enzyme as the second argument (along with any state
specifications) and finally the product species. The bid_rates
argument is the list of rates that we declared earlier.

You may have noticed a problem with the previous statements. The
Bid species undergoes a transformation from state S='u' to
S='t' but the activation of Bax and Bak happens only when
Bid is in state S='m' to imply that these events only happen
at the membrane. In order to transport Bid from the 't' state
to the 'm' state we need a transporf function. We achieve this by
using the equilibrate macro in PySB between these states. In
addition we use this same macro for the transport of the Bax
species and the BclxL species as shown below.

# Bid, Bax, BclxL "transport" to the membrane
equilibrate(Bid(b=None, S='t'),   Bid(b=None, S='m'), [1e-1, 1e-3])
equilibrate(Bax(b=None, S='m'),   Bax(b=None, S='a'), [1e-1, 1e-3])
equilibrate(BclxL(b=None, S='c'), BclxL(b=None, S='m'), [1e-1, 1e-3])





According to published experimental data, the Bcl-2 family of
inhibitors can inhibit the initiator Bid and the effector Bax
and Bak. These family has complex interactions with all these
proteins. Given that we have three inhibitors, and three molecules to
be inhibited, this indicates nine interactions that need to be
specified. This would involve writing nine reversible reactions in a
rules language or at least eighteen reactions for each direction if we
were writing the ODEs. Given that we are simply stating that these
species bind to inhibit interactions, we can take advantage of two
things. In the first case we have already seen that there is a bind
macro specified in PySB. We can further functionalize this into a
higher level macro, naemly the bind_table macro, which takes a table
of interactions as an argument and generates the rules based on these
simple interactions. We specify the bind table for the inhibitors (top
row) and the inhibited molecules (left column) as follows.

bind_table_b([[                  Bcl2,  BclxL(S='m'),       Mcl1],
              [Bid(S='m'), bcl2_rates,  bcl2_rates,   bcl2_rates],
              [Bax(S='a'), bcl2_rates,  bcl2_rates,         None],
              [Bak(S='a'),       None,  bcl2_rates,   bcl2_rates]])





As shown the inhibitors interact by giving the rates of interactions
or the “None” Python keyword to indicate no interaction. The only
thing left to run this simple model is to declare some initial
conditions and some observables. We declare the following:

# initial conditions
Parameter('C8_0',    1e4)
Parameter('Bid_0',   1e4)
Parameter('Bax_0',  .8e5)
Parameter('Bak_0',  .2e5)
Parameter('BclxL_0', 1e3)
Parameter('Bcl2_0',  1e3)
Parameter('Mcl1_0',  1e3)

Initial(C8(b=None), C8_0)
Initial(Bid(b=None, S='u'), Bid_0)
Initial(Bax(b=None, S='i'), Bax_0)
Initial(Bak(b=None, S='i'), Bak_0)
Initial(BclxL(b=None, S='c'), BclxL_0)
Initial(Bcl2(b=None), Bcl2_0)
Initial(Mcl1(b=None), Mcl1_0)

# Observables
Observable('obstBid', Bid(b=None, S='m'))
Observable('obsBax', Bax(b=None, S='a'))
Observable('obsBak', Bax(b=None, S='a'))
Observable('obsBaxBclxL', Bax(b=1, S='a')%BclxL(b=1, S='m'))





By now you should have a file with all the components that looks
something like this:

# import the pysb module and all its methods and functions
from pysb import *
from pysb.macros import *

# some functions to make life easy
site_name = 'b'
def catalyze_b(enz, sub, product, klist):
    """Alias for pysb.macros.catalyze with default binding site 'b'.
    """
    return catalyze(enz, site_name, sub, site_name, product, klist)

def bind_table_b(table):
    """Alias for pysb.macros.bind_table with default binding sites 'bf'.
    """
    return bind_table(table, site_name, site_name)

# Default forward, reverse, and catalytic rates
KF = 1e-6
KR = 1e-3
KC = 1

# Bid activation rates
bid_rates = [        1e-7, 1e-3, 1] #

# Bcl2 Inhibition Rates
bcl2_rates = [1.428571e-05, 1e-3] # 1.0e-6/v_mito

# instantiate a model
Model()

# declare monomers
Monomer('C8',    ['b'])
Monomer('Bid',   ['b', 'S'], {'S':['u', 't', 'm']})
Monomer('Bax',   ['b', 'S'], {'S':['i', 'a', 'm']})
Monomer('Bak',   ['b', 'S'], {'S':['i', 'a']})
Monomer('BclxL', ['b', 'S'], {'S':['c', 'm']})
Monomer('Bcl2', ['b'])
Monomer('Mcl1', ['b'])

# Activate Bid
catalyze_b(C8, Bid(S='u'), Bid(S='t'), [KF, KR, KC])

# Activate Bax/Bak
catalyze_b(Bid(S='m'), Bax(S='i'), Bax(S='m'), bid_rates)
catalyze_b(Bid(S='m'), Bak(S='i'), Bak(S='a'), bid_rates)

# Bid, Bax, BclxL "transport" to the membrane
equilibrate(Bid(b=None, S='t'),   Bid(b=None, S='m'), [1e-1, 1e-3])
equilibrate(Bax(b=None, S='m'),   Bax(b=None, S='a'), [1e-1, 1e-3])
equilibrate(BclxL(b=None, S='c'), BclxL(b=None, S='m'), [1e-1, 1e-3])


bind_table_b([[                  Bcl2,  BclxL(S='m'),       Mcl1],
              [Bid(S='m'), bcl2_rates,  bcl2_rates,   bcl2_rates],
              [Bax(S='a'), bcl2_rates,  bcl2_rates,         None],
              [Bak(S='a'),       None,  bcl2_rates,   bcl2_rates]])

# initial conditions
Parameter('C8_0',    1e4)
Parameter('Bid_0',   1e4)
Parameter('Bax_0',  .8e5)
Parameter('Bak_0',  .2e5)
Parameter('BclxL_0', 1e3)
Parameter('Bcl2_0',  1e3)
Parameter('Mcl1_0',  1e3)

Initial(C8(b=None), C8_0)
Initial(Bid(b=None, S='u'), Bid_0)
Initial(Bax(b=None, S='i'), Bax_0)
Initial(Bak(b=None, S='i'), Bak_0)
Initial(BclxL(b=None, S='c'), BclxL_0)
Initial(Bcl2(b=None), Bcl2_0)
Initial(Mcl1(b=None), Mcl1_0)

# Observables
Observable('obstBid', Bid(b=None, S='m'))
Observable('obsBax', Bax(b=None, S='a'))
Observable('obsBak', Bax(b=None, S='a'))
Observable('obsBaxBclxL', Bax(b=1, S='a')%BclxL(b=1, S='m'))





With this you should be able to run the simulations and generate
figures as described in the basic tutorial sections.




Compartments

We will continue building on your mymodel_fxns.py file and add one
more species and a compartment. In extrinsic apoptosis, once tBid is
activated it translocates to the outer mitochondrial membrane where it
interacts with the protein Bak (residing in the membrane).




Model calibration

COMING SOON: ANNEAL




Modules

Footnotes




	[1]	Technically speaking it’s a constructor, not just any old
function.







	[2]	Python allows users to write python code such as PySB code
to a file and use this code later as an executable script or
from an interactive instance. Such files are called modules and
can be imported into a Python instance. See `Python modules
<http://docs.python.org/tutorial/modules.html>’_ for details.







	[3]	The astute Python programmer will recognize this as the
repr of the monomer object, using keyword arguments in the
constructor call.







	[4]	SciPy: http://www.scipy.org







	[5]	(1, 2) PyLab: http://www.scipy.org/PyLab
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Rules Primer


Section

In rules-based modeling, units that undergo transformations such as
proteins, small molecules, protein complexes, etc are termed
species. The interactions among these species are then represented
using structured objects that describe the interactions between the
species and constitute what we describe as rules. The specific
details of how species and rules are specified can vary across
different rules-based modeling approaches. In PySB we have chosen to
ascribe to the approaches found in `BioNetGen`_ and `Kappa`_, but
other approaches are certainly possible for advanced users interested
in modifying the source code. Each rule, describing the interaction
between species or sets of species must be assigned a set of
parameters associated with the nature of the rule. Given that
`BioNetGen`_ and `Kappa`_ both describe interactions using a
mass-action kinetics formalism, the parameters will necessarily
consist of reaction rates. In what follows we describe how a model can
be instantiated in PySB, how species and rules are specified, and
how to run a simple simulation.




Section

ble
ble ble
ble ble ble
ble ble ble ble
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PySB core


	
class pysb.core.Compartment(name, parent=None, dimension=3, size=None, _export=True)[source]

	Model component representing a bounded reaction volume.

Methods






	
class pysb.core.ComplexPattern(monomer_patterns, compartment, match_once=False)[source]

	A bound set of MonomerPatterns, i.e. a pattern to match a complex.

In BNG terms, a list of patterns combined with the ‘.’ operator.

Methods


	
copy()[source]

	Implement our own brand of shallow copy.

The new object will have references to the original compartment, and
copies of the monomer_patterns.






	
is_concrete()[source]

	Return a bool indicating whether the pattern is ‘concrete’.

‘Concrete’ means the pattern satisfies ANY of the following:
1. All monomer patterns are concrete
2. The compartment is specified AND all monomer patterns are site-concrete






	
is_equivalent_to(other)[source]

	Checks for equality with another ComplexPattern










	
class pysb.core.Component(name, _export=True)[source]

	The base class for all the things contained within a model.

Methods






	
exception pysb.core.ComponentDuplicateNameError[source]

	Issued by ComponentSet.add when a component is added with the
same name as an existing one.






	
class pysb.core.ComponentSet(iterable=[])[source]

	An add-and-read-only container for storing model Components. It behaves mostly like an
ordered set, but components can also be retrieved by name or index by using the [] operator
(like a dict or list). Components may not be removed or replaced.

Methods


	
rename(c, new_name)[source]

	Change a component’s name in our data structures










	
exception pysb.core.InvalidComponentNameError(name)[source]

	Issued by Component.__init__ when the given name is not valid.






	
class pysb.core.Model(name=None, _export=True)[source]

	Container for monomers, compartments, parameters, and rules.

Methods


	
all_component_sets()[source]

	Return a list of all ComponentSet objects






	
enable_synth_deg()[source]

	Add components needed to support synthesis and degradation rules.






	
has_synth_deg()[source]

	Return true if model uses synthesis or degradation reactions.






	
parameters_compartments()[source]

	Returns a ComponentSet of the parameters used as compartment sizes






	
parameters_initial_conditions()[source]

	Returns a ComponentSet of the parameters used as initial conditions






	
parameters_rules()[source]

	Returns a ComponentSet of the parameters used as rate constants in rules






	
parameters_unused()[source]

	Returns a ComponentSet of the parameters not used in the model at all






	
reset_equations()[source]

	Clear out anything generated by bng.generate_equations or the like










	
exception pysb.core.ModelExistsWarning[source]

	Issued by Model constructor when a second model is defined.






	
class pysb.core.Monomer(name, sites=[], site_states={}, _export=True)[source]

	Model component representing a protein or other molecule.

Methods






	
class pysb.core.MonomerAny[source]

	A wildcard monomer which matches any species.

This is only needed where you would use a ‘+’ in BNG.

Methods






	
class pysb.core.MonomerPattern(monomer, site_conditions, compartment)[source]

	A pattern which matches instances of a given monomer, possibly with
restrictions on the state of certain sites.

Methods


	
is_concrete()[source]

	Return a bool indicating whether the pattern is ‘concrete’.

‘Concrete’ means the pattern satisfies ALL of the following:
1. All sites have specified conditions
2. If the model uses compartments, the compartment is specified.






	
is_site_concrete()[source]

	Return a bool indicating whether the pattern is ‘site-concrete’.

‘Site-concrete’ means all sites have specified conditions.










	
class pysb.core.MonomerWild[source]

	A wildcard monomer which matches any species, or nothing (no bond).

This is only needed where you would use a ‘?’ in BNG.

Methods






	
class pysb.core.Observable(name, reaction_pattern, _export=True)[source]

	Model component representing a linear combination of species.

May be used in rate law expressions.

Methods






	
class pysb.core.Parameter(name, value=0.0, _export=True)[source]

	Model component representing a named constant floating point number.

Parameters are used as reaction rate constants, compartment volumes and
initial (boundary) conditions for species.

Methods






	
class pysb.core.ReactionPattern(complex_patterns)[source]

	A pattern for the entire product or reactant side of a rule.

Essentially a thin wrapper around a list of ComplexPatterns. In BNG terms, a
list of complex patterns combined with the ‘+’ operator.






	
class pysb.core.RuleExpression(reactant_pattern, product_pattern, is_reversible)[source]

	A container for the reactant and product patterns of a rule expression.

Contains one ReactionPattern for each of reactants and products, and a
boolean indicating reversibility. This is a temporary object used to
implement syntactic sugar through operator overloading. The Rule constructor
takes an instance of this class as its first argument, but simply extracts
its fields and discards the object itself.






	
exception pysb.core.SymbolExistsWarning[source]

	Issued by model component constructors when a name is reused.






	
pysb.core.as_complex_pattern(v)[source]

	Internal helper to ‘upgrade’ a MonomerPattern to a ComplexPattern.






	
pysb.core.as_reaction_pattern(v)[source]

	Internal helper to ‘upgrade’ a Complex- or MonomerPattern to a
complete ReactionPattern.






	
pysb.core.extract_site_conditions(*args, **kwargs)[source]

	Handle parsing of MonomerPattern site conditions.
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Macros


	
pysb.macros.equilibrate(s1, s2, klist)[source]

	Generate the unimolecular reversible equilibrium reaction S1 <-> S2.





	Parameters :	s1, s2 : Monomer or MonomerPattern


S1 and S2 in the above reaction.




klist : list of 2 Parameters or list of 2 numbers


Forward (S1 -> S2) and reverse rate constants (in that order). If
Parameters are passed, they will be used directly in the generated
Rules. If numbers are passed, Parameters will be created with
automatically generated names based on the names and states of S1 and S2
and these parameters will be included at the end of the returned
component list.







	Returns :	components : ComponentSet


The generated components. Contains one reversible Rule and optionally
two Parameters if klist was given as plain numbers.















	
pysb.macros.bind(s1, site1, s2, site2, klist)[source]

	Generate the reversible binding reaction S1 + S2 <> S1:S2.





	Parameters :	s1, s2 : Monomer or MonomerPattern


Monomers participating in the binding reaction.




site1, site2 : string


The names of the sites on s1 and s2 used for binding.




klist : list of 2 Parameters or list of 2 numbers


Forward and reverse rate constants (in that order). If Parameters are
passed, they will be used directly in the generated Rules. If numbers
are passed, Parameters will be created with automatically generated
names based on the names and states of S1 and S2 and these parameters
will be included at the end of the returned component list.







	Returns :	components : ComponentSet


The generated components. Contains the bidirectional binding Rule
and optionally two Parameters if klist was given as numbers.










Examples

Model()
Monomer(‘A’, [‘x’])
Monomer(‘B’, [‘y’])
bind(A, ‘x’, B, ‘y’, [1e-4, 1e-1])






	
pysb.macros.bind_table(bindtable, row_site, col_site)[source]

	Generate a table of reversible binding reactions.

Given two lists of species R and C, calls the bind macro on each pairwise
combination (R[i], C[j]). The species lists and the parameter values are
passed as a list of lists (i.e. a table) with elements of R passed as the
“row headers”, elements of C as the “column headers”, and forward / reverse
rate pairs (in that order) as tuples in the “cells”. For example with two
elements in each of R and C, the table would appear as follows (note that
the first row has one fewer element than the subsequent rows):

[[              C1,           C2],
 [R1, (1e-4, 1e-1), (2e-4, 2e-1)],
 [R2, (3e-4, 3e-1), (4e-4, 4e-1)]]





Each parameter tuple may contain Parameters or numbers. If Parameters are
passed, they will be used directly in the generated Rules. If numbers are
passed, Parameters will be created with automatically generated names based
on the names and states of the relevant species and these parameters will be
included at the end of the returned component list. To omit any individual
reaction, pass None in place of the corresponding parameter tuple.





	Parameters :	bindtable : list of lists


Table of reactants and rates, as described above.




row_site, col_site : string


The names of the sites on the elements of R and C, respectively, used
for binding.







	Returns :	components : ComponentSet


The generated components. Contains the bidirectional binding Rules and
optionally the Parameters for any parameters given as numbers.










Examples

Model()
Monomer(‘R1’, [‘x’])
Monomer(‘R2’, [‘x’])
Monomer(‘C1’, [‘y’])
Monomer(‘C2’, [‘y’])
bind_table([[              C1,           C2],



[R1, (1e-4, 1e-1), (2e-4, 2e-1)],
[R2, (3e-4, 3e-1), None        ]],


‘x’, ‘y’)









	
pysb.macros.catalyze(enzyme, e_site, substrate, s_site, product, klist)[source]

	Generate the two-step catalytic reaction E + S <> E:S >> E + P.





	Parameters :	enzyme, substrate, product : Monomer or MonomerPattern


E, S and P in the above reaction.




e_site, s_site : string


The names of the sites on enzyme and substrate (respectively) where
they bind each other to form the E:S complex.




klist : list of 3 Parameters or list of 3 numbers


Forward, reverse and catalytic rate constants (in that order). If
Parameters are passed, they will be used directly in the generated
Rules. If numbers are passed, Parameters will be created with
automatically generated names based on the names and states of enzyme,
substrate and product and these parameters will be included at the end
of the returned component list.







	Returns :	components : ComponentSet


The generated components. Contains two Rules (bidirectional complex
formation and unidirectional product dissociation), and optionally three
Parameters if klist was given as plain numbers.










Notes

When passing a MonomerPattern for enzyme or substrate, do not include
e_site or s_site in the respective patterns. The macro will handle this.

Examples

Using distinct Monomers for substrate and product:

Model()
Monomer('E', ['b'])
Monomer('S', ['b'])
Monomer('P')
catalyze(E, 'b', S, 'b', P, (1e-4, 1e-1, 1))





Using a single Monomer for substrate and product with a state change:

Monomer('Kinase', ['b'])
Monomer('Substrate', ['b', 'y'], {'y': ('U', 'P')})
catalyze(Kinase, 'b', Substrate(y='U'), 'b', Substrate(y='P'),
         (1e-4, 1e-1, 1))










	
pysb.macros.catalyze_state(enzyme, e_site, substrate, s_site, mod_site, state1, state2, klist)[source]

	Generate the two-step catalytic reaction E + S <> E:S >> E + P.
A wrapper around catalyze() with a signature specifying the state change
of the substrate resulting from catalysis.





	Parameters :	enzyme : Monomer or MonomerPattern


E in the above reaction.




substrate : Monomer or MonomerPattern


S and P in the above reaction. The product species is assumed to be
identical to the substrate species in all respects except the state
of the modification site. The state of the modification site should
not be specified in the MonomerPattern for the substrate.




e_site, s_site : string


The names of the sites on enzyme and substrate (respectively) where
they bind each other to form the E:S complex.




mod_site : string


The name of the site on the substrate that is modified by catalysis.




state1, state2 : strings


The states of the modification site (mod_site) on the substrate before
(state1) and after (state2) catalysis.




klist : list of 3 Parameters or list of 3 numbers


Forward, reverse and catalytic rate constants (in that order). If
Parameters are passed, they will be used directly in the generated
Rules. If numbers are passed, Parameters will be created with
automatically generated names based on the names and states of enzyme,
substrate and product and these parameters will be included at the end
of the returned component list.







	Returns :	components : ComponentSet


The generated components. Contains two Rules (bidirectional complex
formation and unidirectional product dissociation), and optionally three
Parameters if klist was given as plain numbers.










Notes

When passing a MonomerPattern for enzyme or substrate, do not include
e_site or s_site in the respective patterns. In addition, do not
include the state of the modification site on the substrate. The macro
will handle this.

Examples

Using a single Monomer for substrate and product with a state change:

Monomer('Kinase', ['b'])
Monomer('Substrate', ['b', 'y'], {'y': ('U', 'P')})
catalyze_state(Kinase, 'b', Substrate, 'b', 'y', 'U', 'P',
         (1e-4, 1e-1, 1))










	
pysb.macros.catalyze_table()[source]

	table[0]: [                                             E1, ...,     En]
table[1]: [S1(site=’ssub’), S1(site=’sprod’), (kf, kr, kc), ...,  (...)]
(TABLE, ‘sbsite’, ‘ebsite’)

table[0]: [                                        E1, ...,     En]
table[1]: [S1, ‘site’, ‘ssub’, ‘sprod’ , (kf, kr, kc), ...,  (...)]
(TABLE, ‘sbsite’, ‘ebsite’)

table[0]: [                                        E1, ...,     En]
table[1]: [S1, (kf, kr, kc), ...,  (...)]
(TABLE, ‘sbsite’, ‘ebsite’ ‘smodsite’, ‘ssub’, ‘sprod’)






	
pysb.macros.catalyze_one_step(enzyme, substrate, product, kf)[source]

	Generate the one-step catalytic reaction E + S >> E + P.





	Parameters :	enzyme, substrate, product : Monomer or MonomerPattern


E, S and P in the above reaction.




kf : a Parameter or a number


Forward rate constant for the reaction. If a
Parameter is passed, it will be used directly in the generated
Rules. If a number is passed, a Parameter will be created with an
automatically generated name based on the names and states of the
enzyme, substrate and product and this parameter will be included
at the end of the returned component list.







	Returns :	components : ComponentSet


The generated components. Contains the unidirectional reaction Rule
and optionally the forward rate Parameter if klist was given as a
number.










Notes

In this macro, there is no direct binding between enzyme and substrate,
so binding sites do not have to be specified. This represents an
approximation for the case when the enzyme is operating in its linear
range. However, if catalysis is nevertheless contingent on the enzyme or
substrate being unbound on some site, then that information must be encoded
in the MonomerPattern for the enzyme or substrate. See the examples, below.

If the ability of the enzyme E to catalyze this reaction is dependent
on the site ‘b’ of E being unbound, then this macro must be called as


catalyze_one_step(E(b=None), S, P, 1e-4)


and similarly if the substrate or product must be unbound.






	
pysb.macros.catalyze_one_step_reversible(enzyme, substrate, product, klist)[source]

	Create fwd and reverse rules for catalysis of the form:
E + S -> E + P


P -> S






	Parameters :	enzyme, substrate, product : Monomer or MonomerPattern


E, S and P in the above reactions.




klist : list of 2 Parameters or list of 2 numbers


A list containing the rate constant for catalysis and the rate constant
for the conversion of product back to substrate (in that order). If
Parameters are passed, they will be used directly in the generated
Rules. If numbers are passed, Parameters will be created with
automatically generated names based on the names and states of S1 and
S2 and these parameters will be included at the end of the returned
component list.







	Returns :	components : ComponentSet


The generated components. Contains two rules (the single-step catalysis
rule and the product reversion rule) and optionally the two generated
Parameter objects if klist was given as numbers.










Notes

Calls the macro catalyze_one_step to generate the catalysis rule.

Examples

Model()
Monomer(‘E’, [‘b’])
Monomer(‘S’, [‘b’])
Monomer(‘P’)
catalyze_one_step_reversible(E, S, P, [1e-1, 1e-4])






	
pysb.macros.synthesize(species, ksynth)[source]

	Generate a reaction which synthesizes a species.

Note that species must be “concrete”, i.e. the state of all
sites in all of its monomers must be specified. No site may be
left unmentioned.





	Parameters :	species : Monomer, MonomerPattern or ComplexPattern


The species to synthesize. If a Monomer, sites are considered
as unbound and in their default state. If a pattern, must be
concrete.




ksynth : Parameters or number


Synthesis rate. If a Parameter is passed, it will be used directly in
the generated Rule. If a number is passed, a Parameter will be created
with an automatically generated name based on the names and site states
of the components of species and this parameter will be included at
the end of the returned component list.







	Returns :	components : ComponentSet


The generated components. Contains the unidirectional synthesis Rule and
optionally a Parameter if ksynth was given as a number.










Examples

Model()
Monomer(‘A’, [‘x’, ‘y’], {‘y’: [‘e’, ‘f’]})
synthesize(A(x=None, y=’e’), 1e-4)






	
pysb.macros.degrade(species, kdeg)[source]

	Generate a reaction which degrades a species.

Note that species is not required to be “concrete”.





	Parameters :	species : Monomer, MonomerPattern or ComplexPattern


The species to synthesize. If a Monomer, sites are considered
as unbound and in their default state. If a pattern, must be
concrete.




kdeg : Parameters or number


Degradation rate. If a Parameter is passed, it will be used directly in
the generated Rule. If a number is passed, a Parameter will be created
with an automatically generated name based on the names and site states
of the components of species and this parameter will be included at
the end of the returned component list.







	Returns :	components : ComponentSet


The generated components. Contains the unidirectional degradation Rule
and optionally a Parameter if ksynth was given as a number.










Examples

Model()
Monomer(‘B’, [‘x’])
degrade(B(), 1e-6)  # degrade all B, even bound species






	
pysb.macros.synthesize_degrade_table(table)[source]

	Generate a table of synthesis and degradation reactions.

Given a list of species, calls the synthesize and degrade macros on each
one. The species and the parameter values are passed as a list of lists
(i.e. a table) with each inner list consisting of the species, forward and
reverse rates (in that order).

Each species’ associated pair of rates may be either Parameters or
numbers. If Parameters are passed, they will be used directly in the
generated Rules. If numbers are passed, Parameters will be created with
automatically generated names based on the names and states of the relevant
species and these parameters will be included in the returned component
list. To omit any individual reaction, pass None in place of the
corresponding parameter.

Note that any species with a non-None synthesis rate must be “concrete”.





	Parameters :	table : list of lists


Table of species and rates, as described above.







	Returns :	components : ComponentSet


The generated components. Contains the unidirectional synthesis and
degradation Rules and optionally the Parameters for any rates given as
numbers.










Examples

Model()
Monomer(‘A’, [‘x’, ‘y’], {‘y’: [‘e’, ‘f’]})
Monomer(‘B’, [‘x’])
synthesize_degrade_table([[A(x=None, y=’e’), 1e-4, 1e-6],


[B(),              None, 1e-7]])







	
pysb.macros.assemble_pore_sequential(subunit, site1, site2, max_size, ktable)[source]

	Generate rules to assemble a circular homomeric pore sequentially.

The pore species are created by sequential addition of subunit monomers,
i.e. larger oligomeric species never fuse together. The pore structure is
defined by the pore_species macro.





	Parameters :	subunit : Monomer or MonomerPattern


The subunit of which the pore is composed.




site1, site2 : string


The names of the sites where one copy of subunit binds to the next.




max_size : integer


The maximum number of subunits in the pore.




ktable : list of lists of Parameters or numbers


Table of forward and reverse rate constants for the assembly steps. The
outer list must be of length max_size - 1, and the inner lists must
all be of length 2. In the outer list, the first element corresponds to
the first assembly step in which two monomeric subunits bind to form a
2-subunit complex, and the last element corresponds to the final step in
which the max_size`th subunit is added. Each inner list contains the
forward and reverse rate constants (in that order) for the corresponding
assembly reaction, and each of these pairs must comprise solely
Parameter objects or solely numbers (never one of each). If Parameters
are passed, they will be used directly in the generated Rules. If
numbers are passed, Parameters will be created with automatically
generated names based on `subunit, site1, site2 and the pore sizes
and these parameters will be included at the end of the returned
component list.















	
pysb.macros.pore_transport(subunit, sp_site1, sp_site2, sc_site, min_size, max_size, csource, c_site, cdest, ktable)[source]

	Generate rules to transport cargo through a circular homomeric pore.

The pore structure is defined by the pore_species macro – subunit
monomers bind to each other from sp_site1 to sp_site2 to form a closed
ring. The transport reaction is modeled as a catalytic process of the form
pore + csource <> pore:csource >> pore + cdest





	Parameters :	subunit : Monomer or MonomerPattern


Subunit of which the pore is composed.




sp_site1, sp_site2 : string


Names of the sites where one copy of subunit binds to the next.




sc_site : string


Name of the site on subunit where it binds to the cargo csource.




min_size, max_size : integer


Minimum and maximum number of subunits in the pore at which transport
will occur.




csource : Monomer or MonomerPattern


Cargo “source”, i.e. the entity to be transported.




c_site : string


Name of the site on csource where it binds to subunit.




cdest : Monomer or MonomerPattern


Cargo “destination”, i.e. the resulting state after the transport event.




ktable : list of lists of Parameters or numbers


Table of forward, reverse and catalytic rate constants for the transport
reactions. The outer list must be of length max_size - min_size + 1,
and the inner lists must all be of length 3. In the outer list, the
first element corresponds to the transport through the pore of size
min_size and the last element to that of size max_size. Each inner
list contains the forward, reverse and catalytic rate constants (in that
order) for the corresponding transport reaction, and each of these pairs
must comprise solely Parameter objects or solely numbers (never some of
each). If Parameters are passed, they will be used directly in the
generated Rules. If numbers are passed, Parameters will be created with
automatically generated names based on the subunit, the pore size and
the cargo, and these parameters will be included at the end of the
returned component list.
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  Source code for pysb.macros

import inspect
from pysb import *
import pysb.core
from pysb.core import ComponentSet, as_reaction_pattern, as_complex_pattern
import numbers
import functools

__all__ = ['equilibrate',
           'bind', 'bind_table',
           'catalyze', 'catalyze_state', 'catalyze_table',
           'catalyze_one_step', 'catalyze_one_step_reversible',
           'synthesize', 'degrade', 'synthesize_degrade_table',
           'assemble_pore_sequential', 'pore_transport']

## Internal helper functions
def _complex_pattern_label(cp):
    """Return a string label for a ComplexPattern."""
    mp_labels = [_monomer_pattern_label(mp) for mp in cp.monomer_patterns]
    return ''.join(mp_labels)

def _monomer_pattern_label(mp):
    """Return a string label for a MonomerPattern."""
    site_values = [str(x) for x in mp.site_conditions.values()
                            if x is not None
                            and not isinstance(x, list)
                            and not isinstance(x, tuple)
                            and not isinstance(x, numbers.Real)]
    return mp.monomer.name + ''.join(site_values)

def _rule_name_generic(rule_expression):
    """Return a generic string label for a RuleExpression."""
    # Get ReactionPatterns
    react_p = rule_expression.reactant_pattern
    prod_p = rule_expression.product_pattern
    # Build the label components
    lhs_label = [_complex_pattern_label(cp) for cp in react_p.complex_patterns]
    lhs_label = '_'.join(lhs_label)
    rhs_label = [_complex_pattern_label(cp) for cp in prod_p.complex_patterns]
    rhs_label = '_'.join(rhs_label)
    return '%s_to_%s' % (lhs_label, rhs_label)

def _macro_rule(rule_prefix, rule_expression, klist, ksuffixes,
                name_func=_rule_name_generic):
    """A helper function for writing macros that generates a single rule.

    Parameters
    ----------
    rule_prefix : string
        The prefix that is prepended to the (automatically generated) name for
        the rule.
    rule_expression : RuleExpression
        An expression specifying the form of the rule; gets passed directly
        to the Rule constructor.
    klist : list of Parameters or list of numbers
        If the rule is unidirectional, the list must contain one element
        (either a Parameter or number); if the rule is reversible, it must
        contain two elements. If the rule is reversible, the first element
        in the list is taken to be the forward rate, and the second element
        is taken as the reverse rate. 
    ksuffixes : list of strings
        If klist contains numbers rather than Parameters, the strings in
        ksuffixes are used to automatically generate the necessary Parameter
        objects. The suffixes are appended to the rule name to generate the
        associated parameter name. ksuffixes must contain one element if the
        rule is unidirectional, two if it is reversible.
    name_func : function, optional
        A function which takes a RuleExpression and returns a string label for
        it, to be called as part of the automatic rule name generation. If not
        provided, a built-in default naming function will be used.

    Returns
    -------
    components : ComponentSet
        The generated components. Contains the generated Rule and up to two
        generated Parameter objects (if klist was given as numbers).

    Notes
    -----
    The default naming scheme (if `name_func` is not passed) follows the form::

        '%s_%s_to_%s' % (rule_prefix, lhs_label, rhs_label)

    where lhs_label and rhs_label are each concatenations of the Monomer names
    and specified sites in the ComplexPatterns on each side of the
    RuleExpression. The actual implementation is in the function
    _rule_name_generic, which in turn calls _complex_pattern_label and
    _monomer_pattern_label. For some specialized reactions it may be helpful to
    devise a custom naming scheme rather than rely on this default.

    Examples
    --------
    Using distinct Monomers for substrate and product::

        >>> from pysb import *
        >>> from pysb.macros import _macro_rule
        >>> 
        >>> Model() # doctest:+ELLIPSIS
        <Model '<interactive>' (monomers: 0, rules: 0, parameters: 0, compartments: 0) at ...>
        >>> Monomer('A', ['s'])
        Monomer(name='A', sites=['s'], site_states={})
        >>> Monomer('B', ['s'])
        Monomer(name='B', sites=['s'], site_states={})
        >>> 
        >>> _macro_rule('bind', A(s=None) + B(s=None) <> A(s=1) % B(s=1), [1e6, 1e-1], ['kf', 'kr'])
        {'bind_A_B_to_A1B1': Rule(name='bind_A_B_to_A1B1', reactants=A(s=None) + B(s=None), products=A(s=1) % B(s=1), rate_forward=Parameter(name='bind_A_B_to_A1B1_kf', value=1000000.0), rate_reverse=Parameter(name='bind_A_B_to_A1B1_kr', value=0.1)),
         'bind_A_B_to_A1B1_kf': Parameter(name='bind_A_B_to_A1B1_kf', value=1000000.0),
         'bind_A_B_to_A1B1_kr': Parameter(name='bind_A_B_to_A1B1_kr', value=0.1)}
        >>> 

    """

    r_name = '%s_%s' % (rule_prefix, name_func(rule_expression))

    # If rule is unidirectional, make sure we only have one parameter
    if (not rule_expression.is_reversible):
        if len(klist) != 1 or len(ksuffixes) != 1:
            raise ValueError("A unidirectional rule must have one parameter.")
    # If rule is bidirectional, make sure we have two parameters
    else:
        if len(klist) != 2 or len(ksuffixes) != 2:
            raise ValueError("A bidirectional rule must have two parameters.")

    if all(isinstance(x, Parameter) for x in klist):
        k1 = klist[0]
        if rule_expression.is_reversible:
            k2 = klist[1]
        params_created = ComponentSet()
    # if klist is numbers, generate the Parameters
    elif all(isinstance(x, numbers.Real) for x in klist):
        k1 = Parameter('%s_%s' % (r_name, ksuffixes[0]), klist[0])
        params_created = ComponentSet([k1]) 
        if rule_expression.is_reversible:
            k2 = Parameter('%s_%s' % (r_name, ksuffixes[1]),
                           klist[1])
            params_created.add(k2)
    else:
        raise ValueError("klist must contain Parameter objects or numbers.")

    if rule_expression.is_reversible:
        r = Rule(r_name, rule_expression, k1, k2)
    else:
        r = Rule(r_name, rule_expression, k1)

    # Build a set of components that were created
    return ComponentSet([r]) | params_created

def _verify_sites(m, *site_list):
    """Checks that the monomer m contains all of the sites in site_list.

    Parameters
    ----------
    m : Monomer or MonomerPattern
        The monomer to check.
    site1, site2, ... : string
        One or more site names to check on m

    Returns
    -------
    True if m contains all sites; raises a ValueError otherwise.

    Raises
    ------
    ValueError
        If any of the sites are not found.
    """

    for site in site_list:
        if site not in m().monomer.sites_dict:
            raise ValueError("Monomer '%s' must contain the site '%s'" %
                            (m().monomer.name, site))
    return True

## Unimolecular patterns
[docs]def equilibrate(s1, s2, klist):
    """Generate the unimolecular reversible equilibrium reaction S1 <-> S2.

    Parameters
    ----------
    s1, s2 : Monomer or MonomerPattern
        S1 and S2 in the above reaction.
    klist : list of 2 Parameters or list of 2 numbers
        Forward (S1 -> S2) and reverse rate constants (in that order). If
        Parameters are passed, they will be used directly in the generated
        Rules. If numbers are passed, Parameters will be created with
        automatically generated names based on the names and states of S1 and S2
        and these parameters will be included at the end of the returned
        component list.

    Returns
    -------
    components : ComponentSet
        The generated components. Contains one reversible Rule and optionally
        two Parameters if klist was given as plain numbers.
    """
    
    # turn any Monomers into MonomerPatterns
    return _macro_rule('equilibrate', s1() <> s2(), klist, ['kf', 'kr'])

## Binding

[docs]def bind(s1, site1, s2, site2, klist):
    """Generate the reversible binding reaction S1 + S2 <> S1:S2.

    Parameters
    ----------
    s1, s2 : Monomer or MonomerPattern
        Monomers participating in the binding reaction.
    site1, site2 : string 
        The names of the sites on s1 and s2 used for binding.
    klist : list of 2 Parameters or list of 2 numbers
        Forward and reverse rate constants (in that order). If Parameters are
        passed, they will be used directly in the generated Rules. If numbers
        are passed, Parameters will be created with automatically generated
        names based on the names and states of S1 and S2 and these parameters
        will be included at the end of the returned component list.

    Returns
    -------
    components : ComponentSet
        The generated components. Contains the bidirectional binding Rule
        and optionally two Parameters if klist was given as numbers.

    Examples
    --------
        Model()
        Monomer('A', ['x'])
        Monomer('B', ['y'])
        bind(A, 'x', B, 'y', [1e-4, 1e-1])

    """

    _verify_sites(s1, site1)
    _verify_sites(s2, site2)

    def bind_name_func(rule_expression):
        # Get ComplexPatterns
        react_cps = rule_expression.reactant_pattern.complex_patterns
        # Build the label components
        return '_'.join(_complex_pattern_label(cp) for cp in react_cps)

    return _macro_rule('bind',
                       s1({site1: None}) + s2({site2: None}) <>
                       s1({site1: 1}) % s2({site2: 1}),
                       klist, ['kf', 'kr'], name_func=bind_name_func)


[docs]def bind_table(bindtable, row_site, col_site):
    """Generate a table of reversible binding reactions.

    Given two lists of species R and C, calls the `bind` macro on each pairwise
    combination (R[i], C[j]). The species lists and the parameter values are
    passed as a list of lists (i.e. a table) with elements of R passed as the
    "row headers", elements of C as the "column headers", and forward / reverse
    rate pairs (in that order) as tuples in the "cells". For example with two
    elements in each of R and C, the table would appear as follows (note that
    the first row has one fewer element than the subsequent rows)::

        [[              C1,           C2],
         [R1, (1e-4, 1e-1), (2e-4, 2e-1)],
         [R2, (3e-4, 3e-1), (4e-4, 4e-1)]]

    Each parameter tuple may contain Parameters or numbers. If Parameters are
    passed, they will be used directly in the generated Rules. If numbers are
    passed, Parameters will be created with automatically generated names based
    on the names and states of the relevant species and these parameters will be
    included at the end of the returned component list. To omit any individual
    reaction, pass None in place of the corresponding parameter tuple.

    Parameters
    ----------
    bindtable : list of lists
        Table of reactants and rates, as described above.
    row_site, col_site : string 
        The names of the sites on the elements of R and C, respectively, used
        for binding.

    Returns
    -------
    components : ComponentSet
        The generated components. Contains the bidirectional binding Rules and
        optionally the Parameters for any parameters given as numbers.

    Examples
    --------
        Model()
        Monomer('R1', ['x'])
        Monomer('R2', ['x'])
        Monomer('C1', ['y'])
        Monomer('C2', ['y'])
        bind_table([[              C1,           C2],
                    [R1, (1e-4, 1e-1), (2e-4, 2e-1)],
                    [R2, (3e-4, 3e-1), None        ]],
                   'x', 'y')

    """

    # extract species lists and matrix of rates
    s_rows = [row[0] for row in bindtable[1:]]
    s_cols = bindtable[0]
    kmatrix = [row[1:] for row in bindtable[1:]]

    # loop over interactions
    components = ComponentSet()
    for r, s_row in enumerate(s_rows):
        for c, s_col in enumerate(s_cols):
            klist = kmatrix[r][c]
            if klist is not None:
                components |= bind(s_row(), row_site, s_col(), col_site, klist)

    return components

## Catalysis

[docs]def catalyze(enzyme, e_site, substrate, s_site, product, klist):
    """Generate the two-step catalytic reaction E + S <> E:S >> E + P.

    Parameters
    ----------
    enzyme, substrate, product : Monomer or MonomerPattern
        E, S and P in the above reaction.
    e_site, s_site : string
        The names of the sites on `enzyme` and `substrate` (respectively) where
        they bind each other to form the E:S complex.
    klist : list of 3 Parameters or list of 3 numbers
        Forward, reverse and catalytic rate constants (in that order). If
        Parameters are passed, they will be used directly in the generated
        Rules. If numbers are passed, Parameters will be created with
        automatically generated names based on the names and states of enzyme,
        substrate and product and these parameters will be included at the end
        of the returned component list.

    Returns
    -------
    components : ComponentSet
        The generated components. Contains two Rules (bidirectional complex
        formation and unidirectional product dissociation), and optionally three
        Parameters if klist was given as plain numbers.

    Notes
    -----
    When passing a MonomerPattern for `enzyme` or `substrate`, do not include
    `e_site` or `s_site` in the respective patterns. The macro will handle this.

    Examples
    --------
    Using distinct Monomers for substrate and product::

        Model()
        Monomer('E', ['b'])
        Monomer('S', ['b'])
        Monomer('P')
        catalyze(E, 'b', S, 'b', P, (1e-4, 1e-1, 1))

    Using a single Monomer for substrate and product with a state change::

        Monomer('Kinase', ['b'])
        Monomer('Substrate', ['b', 'y'], {'y': ('U', 'P')})
        catalyze(Kinase, 'b', Substrate(y='U'), 'b', Substrate(y='P'),
                 (1e-4, 1e-1, 1))
    """

    _verify_sites(enzyme, e_site)
    _verify_sites(substrate, s_site)

    # Set up some aliases to the patterns we'll use in the rules
    enzyme_free = enzyme({e_site: None})
    substrate_free = substrate({s_site: None})
    es_complex = enzyme({e_site: 1}) % substrate({s_site: 1})

    # if product is actually a variant of substrate, we need to explicitly say
    # that it is no longer bound to enzyme
    if product().monomer is substrate().monomer:
        product = product({e_site: None})

    # create the rules
    components = _macro_rule('bind',
                             enzyme_free + substrate_free <> es_complex,
                             klist[0:2], ['kf', 'kr'])
    components |= _macro_rule('catalyze',
                              es_complex >> enzyme_free + product,
                              [klist[2]], ['kc'])

    return components


[docs]def catalyze_state(enzyme, e_site, substrate, s_site, mod_site,
                   state1, state2, klist):
    """Generate the two-step catalytic reaction E + S <> E:S >> E + P.
    A wrapper around catalyze() with a signature specifying the state change
    of the substrate resulting from catalysis.

    Parameters
    ----------
    enzyme : Monomer or MonomerPattern
        E in the above reaction.
    substrate : Monomer or MonomerPattern
        S and P in the above reaction. The product species is assumed to be
        identical to the substrate species in all respects except the state
        of the modification site. The state of the modification site should
        not be specified in the MonomerPattern for the substrate.
    e_site, s_site : string
        The names of the sites on `enzyme` and `substrate` (respectively) where
        they bind each other to form the E:S complex.
    mod_site : string
        The name of the site on the substrate that is modified by catalysis.
    state1, state2 : strings
        The states of the modification site (mod_site) on the substrate before
        (state1) and after (state2) catalysis.
    klist : list of 3 Parameters or list of 3 numbers
        Forward, reverse and catalytic rate constants (in that order). If
        Parameters are passed, they will be used directly in the generated
        Rules. If numbers are passed, Parameters will be created with
        automatically generated names based on the names and states of enzyme,
        substrate and product and these parameters will be included at the end
        of the returned component list.

    Returns
    -------
    components : ComponentSet
        The generated components. Contains two Rules (bidirectional complex
        formation and unidirectional product dissociation), and optionally three
        Parameters if klist was given as plain numbers.

    Notes
    -----
    When passing a MonomerPattern for `enzyme` or `substrate`, do not include
    `e_site` or `s_site` in the respective patterns. In addition, do not
    include the state of the modification site on the substrate. The macro
    will handle this.

    Examples
    --------
    Using a single Monomer for substrate and product with a state change::

        Monomer('Kinase', ['b'])
        Monomer('Substrate', ['b', 'y'], {'y': ('U', 'P')})
        catalyze_state(Kinase, 'b', Substrate, 'b', 'y', 'U', 'P',
                 (1e-4, 1e-1, 1))
    """

    return catalyze(enzyme, e_site, substrate({mod_site: state1}),
                    s_site, substrate({mod_site: state2}), klist)

#TODO: Implement

[docs]def catalyze_table():
    """
    table[0]: [                                             E1, ...,     En]
    table[1]: [S1(site='ssub'), S1(site='sprod'), (kf, kr, kc), ...,  (...)]
    (TABLE, 'sbsite', 'ebsite')

    table[0]: [                                        E1, ...,     En]
    table[1]: [S1, 'site', 'ssub', 'sprod' , (kf, kr, kc), ...,  (...)]
    (TABLE, 'sbsite', 'ebsite')

    table[0]: [                                        E1, ...,     En]
    table[1]: [S1, (kf, kr, kc), ...,  (...)]
    (TABLE, 'sbsite', 'ebsite' 'smodsite', 'ssub', 'sprod')

    """
    pass


[docs]def catalyze_one_step(enzyme, substrate, product, kf):
    """Generate the one-step catalytic reaction E + S >> E + P.

    Parameters
    ----------
    enzyme, substrate, product : Monomer or MonomerPattern
        E, S and P in the above reaction.
    kf : a Parameter or a number
        Forward rate constant for the reaction. If a
        Parameter is passed, it will be used directly in the generated
        Rules. If a number is passed, a Parameter will be created with an
        automatically generated name based on the names and states of the
        enzyme, substrate and product and this parameter will be included
        at the end of the returned component list.

    Returns
    -------
    components : ComponentSet
        The generated components. Contains the unidirectional reaction Rule
        and optionally the forward rate Parameter if klist was given as a
        number.

    Notes
    -----
    In this macro, there is no direct binding between enzyme and substrate,
    so binding sites do not have to be specified. This represents an
    approximation for the case when the enzyme is operating in its linear
    range. However, if catalysis is nevertheless contingent on the enzyme or
    substrate being unbound on some site, then that information must be encoded
    in the MonomerPattern for the enzyme or substrate. See the examples, below.

    Examples
    --------
        Model()
        Monomer('E', ['b'])
        Monomer('S', ['b'])
        Monomer('P')
        catalyze_one_step(E, S, P, 1e-4)

    If the ability of the enzyme E to catalyze this reaction is dependent
    on the site 'b' of E being unbound, then this macro must be called as

        catalyze_one_step(E(b=None), S, P, 1e-4)

    and similarly if the substrate or product must be unbound.
    """

    return _macro_rule('one_step',
                       enzyme() + substrate() >> enzyme() + product(),
                       [kf], ['kf'])


[docs]def catalyze_one_step_reversible(enzyme, substrate, product, klist):
    """Create fwd and reverse rules for catalysis of the form:
       E + S -> E + P
           P -> S 

    Parameters
    ----------
    enzyme, substrate, product : Monomer or MonomerPattern
        E, S and P in the above reactions.
    klist : list of 2 Parameters or list of 2 numbers
        A list containing the rate constant for catalysis and the rate constant
        for the conversion of product back to substrate (in that order). If
        Parameters are passed, they will be used directly in the generated
        Rules. If numbers are passed, Parameters will be created with
        automatically generated names based on the names and states of S1 and
        S2 and these parameters will be included at the end of the returned
        component list.

    Returns
    -------
    components : ComponentSet
        The generated components. Contains two rules (the single-step catalysis
        rule and the product reversion rule) and optionally the two generated
        Parameter objects if klist was given as numbers.

    Notes
    -----
    Calls the macro catalyze_one_step to generate the catalysis rule.

    Examples
    --------
        Model()
        Monomer('E', ['b'])
        Monomer('S', ['b'])
        Monomer('P')
        catalyze_one_step_reversible(E, S, P, [1e-1, 1e-4])
    """

    components = catalyze_one_step(enzyme, substrate, product, klist[0])

    components |= _macro_rule('reverse', product() >> substrate(),
                              [klist[1]], ['k'])
    return components

## Synthesis and Degradation
## TODO: Have synth and deg check that patterns are concrete so that
## the user gets a real error, not a BNG error. Ideally, should use
## the default states of unspecified sites.

[docs]def synthesize(species, ksynth):
    """Generate a reaction which synthesizes a species.

    Note that `species` must be "concrete", i.e. the state of all
    sites in all of its monomers must be specified. No site may be
    left unmentioned.

    Parameters
    ----------
    species : Monomer, MonomerPattern or ComplexPattern
        The species to synthesize. If a Monomer, sites are considered
        as unbound and in their default state. If a pattern, must be
        concrete.
    ksynth : Parameters or number
        Synthesis rate. If a Parameter is passed, it will be used directly in
        the generated Rule. If a number is passed, a Parameter will be created
        with an automatically generated name based on the names and site states
        of the components of `species` and this parameter will be included at
        the end of the returned component list.

    Returns
    -------
    components : ComponentSet
        The generated components. Contains the unidirectional synthesis Rule and
        optionally a Parameter if ksynth was given as a number.

    Examples
    --------
        Model()
        Monomer('A', ['x', 'y'], {'y': ['e', 'f']})
        synthesize(A(x=None, y='e'), 1e-4)

    """

    def synthesize_name_func(rule_expression):
        cps = rule_expression.product_pattern.complex_patterns
        return '_'.join(_complex_pattern_label(cp) for cp in cps)

    # TODO: either the >> operator should work with a monomer, or complexpattern
    # shouldn't blow up if it is called
    if isinstance(species, Monomer):
        species = species()
    species = as_complex_pattern(species)
    if not species.is_concrete():
        raise ValueError("species must be concrete")

    return _macro_rule('synthesize', None >> species, [ksynth], ['k'],
                       name_func=synthesize_name_func)


[docs]def degrade(species, kdeg):
    """Generate a reaction which degrades a species.

    Note that `species` is not required to be "concrete".

    Parameters
    ----------
    species : Monomer, MonomerPattern or ComplexPattern
        The species to synthesize. If a Monomer, sites are considered
        as unbound and in their default state. If a pattern, must be
        concrete.
    kdeg : Parameters or number
        Degradation rate. If a Parameter is passed, it will be used directly in
        the generated Rule. If a number is passed, a Parameter will be created
        with an automatically generated name based on the names and site states
        of the components of `species` and this parameter will be included at
        the end of the returned component list.

    Returns
    -------
    components : ComponentSet
        The generated components. Contains the unidirectional degradation Rule
        and optionally a Parameter if ksynth was given as a number.

    Examples
    --------
        Model()
        Monomer('B', ['x'])
        degrade(B(), 1e-6)  # degrade all B, even bound species

    """

    def degrade_name_func(rule_expression):
        cps = rule_expression.reactant_pattern.complex_patterns
        return '_'.join(_complex_pattern_label(cp) for cp in cps)

    # TODO: the >> operator should work with a monomer, or complexpattern
    # shouldn't blow up if it is called
    if isinstance(species, Monomer):
        species = species()
    species = as_complex_pattern(species)

    return _macro_rule('degrade', species >> None, [kdeg], ['k'],
                       name_func=degrade_name_func)


[docs]def synthesize_degrade_table(table):
    """Generate a table of synthesis and degradation reactions.

    Given a list of species, calls the `synthesize` and `degrade` macros on each
    one. The species and the parameter values are passed as a list of lists
    (i.e. a table) with each inner list consisting of the species, forward and
    reverse rates (in that order).

    Each species' associated pair of rates may be either Parameters or
    numbers. If Parameters are passed, they will be used directly in the
    generated Rules. If numbers are passed, Parameters will be created with
    automatically generated names based on the names and states of the relevant
    species and these parameters will be included in the returned component
    list. To omit any individual reaction, pass None in place of the
    corresponding parameter.

    Note that any `species` with a non-None synthesis rate must be "concrete".

    Parameters
    ----------
    table : list of lists
        Table of species and rates, as described above.

    Returns
    -------
    components : ComponentSet
        The generated components. Contains the unidirectional synthesis and
        degradation Rules and optionally the Parameters for any rates given as
        numbers.

    Examples
    --------
        Model()
        Monomer('A', ['x', 'y'], {'y': ['e', 'f']})
        Monomer('B', ['x'])
        synthesize_degrade_table([[A(x=None, y='e'), 1e-4, 1e-6],
                                  [B(),              None, 1e-7]])

    """

    # loop over interactions
    components = ComponentSet()
    for row in table:
        species, ksynth, kdeg = row
        if ksynth is not None:
            components |= synthesize(species, ksynth)
        if kdeg is not None:
            components |= degrade(species, kdeg)

    return components


## Pore assembly

def pore_species(subunit, site1, site2, size):
    """Return a MonomerPattern representing a circular homomeric pore.

    Parameters
    ----------
    subunit : Monomer or MonomerPattern
        The subunit of which the pore is composed.
    site1, site2 : string
        The names of the sites where one copy of `subunit` binds to the next.
    size : integer
        The number of subunits in the pore.

    Returns
    -------
    A MonomerPattern corresponding to the pore.

    Notes
    -----
    At sizes 1 and 2 the ring is not closed, i.e. there is one site1 and one
    site2 which remain unbound. At size 3 and up the ring is closed and all
    site1 sites are bound to a site2.

    Examples
    --------
        Model()
        Monomer('Unit', ['p1', 'p2'])
        pore_tetramer = pore_species(Unit, 'p1', 'p2', 4)

    """
    _verify_sites(subunit, site1, site2)
    if size <= 0:
        raise ValueError("size must be an integer greater than 0")
    if size == 1:
        pore = subunit({site1: None, site2: None})
    elif size == 2:
        pore = subunit({site1: 1, site2: None}) % \
               subunit({site1: None, site2: 1})
    else:
        # build up a ComplexPattern, starting with a single subunit
        pore = subunit({site1: 1, site2: 2})
        for i in range(2, size + 1):
            pore %= subunit({site1: i, site2: i % size + 1})
        pore.match_once = True
    return pore

[docs]def assemble_pore_sequential(subunit, site1, site2, max_size, ktable):
    """Generate rules to assemble a circular homomeric pore sequentially.

    The pore species are created by sequential addition of `subunit` monomers,
    i.e. larger oligomeric species never fuse together. The pore structure is
    defined by the `pore_species` macro.

    Parameters
    ----------
    subunit : Monomer or MonomerPattern
        The subunit of which the pore is composed.
    site1, site2 : string
        The names of the sites where one copy of `subunit` binds to the next.
    max_size : integer
        The maximum number of subunits in the pore.
    ktable : list of lists of Parameters or numbers
        Table of forward and reverse rate constants for the assembly steps. The
        outer list must be of length `max_size` - 1, and the inner lists must
        all be of length 2. In the outer list, the first element corresponds to
        the first assembly step in which two monomeric subunits bind to form a
        2-subunit complex, and the last element corresponds to the final step in
        which the `max_size`th subunit is added. Each inner list contains the
        forward and reverse rate constants (in that order) for the corresponding
        assembly reaction, and each of these pairs must comprise solely
        Parameter objects or solely numbers (never one of each). If Parameters
        are passed, they will be used directly in the generated Rules. If
        numbers are passed, Parameters will be created with automatically
        generated names based on `subunit`, `site1`, `site2` and the pore sizes
        and these parameters will be included at the end of the returned
        component list.

    """
    if len(ktable) != max_size - 1:
        raise ValueError("len(ktable) must be equal to max_size - 1")

    def pore_rule_name(rule_expression, size):
        react_p = rule_expression.reactant_pattern
        monomer = react_p.complex_patterns[0].monomer_patterns[0].monomer
        return '%s_%d' % (monomer.name, size)

    components = ComponentSet()
    s = pore_species(subunit, site1, site2, 1)
    for size, klist in zip(range(2, max_size + 1), ktable):
        pore_prev = pore_species(subunit, site1, site2, size - 1)
        pore_next = pore_species(subunit, site1, site2, size)
        name_func = functools.partial(pore_rule_name, size=size)
        components |= _macro_rule('assemble_pore_sequential',
                                  s + pore_prev <> pore_next,
                                  klist, ['kf', 'kr'],
                                  name_func=name_func)

    return components


[docs]def pore_transport(subunit, sp_site1, sp_site2, sc_site, min_size, max_size,
                   csource, c_site, cdest, ktable):
    """Generate rules to transport cargo through a circular homomeric pore.

    The pore structure is defined by the `pore_species` macro -- `subunit`
    monomers bind to each other from `sp_site1` to `sp_site2` to form a closed
    ring. The transport reaction is modeled as a catalytic process of the form
    pore + csource <> pore:csource >> pore + cdest

    Parameters
    ----------
    subunit : Monomer or MonomerPattern
        Subunit of which the pore is composed.
    sp_site1, sp_site2 : string
        Names of the sites where one copy of `subunit` binds to the next.
    sc_site : string
        Name of the site on `subunit` where it binds to the cargo `csource`.
    min_size, max_size : integer
        Minimum and maximum number of subunits in the pore at which transport
        will occur.
    csource : Monomer or MonomerPattern
        Cargo "source", i.e. the entity to be transported.
    c_site : string
        Name of the site on `csource` where it binds to `subunit`.
    cdest : Monomer or MonomerPattern
        Cargo "destination", i.e. the resulting state after the transport event.
    ktable : list of lists of Parameters or numbers
        Table of forward, reverse and catalytic rate constants for the transport
        reactions. The outer list must be of length `max_size` - `min_size` + 1,
        and the inner lists must all be of length 3. In the outer list, the
        first element corresponds to the transport through the pore of size
        `min_size` and the last element to that of size `max_size`. Each inner
        list contains the forward, reverse and catalytic rate constants (in that
        order) for the corresponding transport reaction, and each of these pairs
        must comprise solely Parameter objects or solely numbers (never some of
        each). If Parameters are passed, they will be used directly in the
        generated Rules. If numbers are passed, Parameters will be created with
        automatically generated names based on the subunit, the pore size and
        the cargo, and these parameters will be included at the end of the
        returned component list.

    """

    _verify_sites(subunit, sc_site)
    _verify_sites(csource, c_site)

    if len(ktable) != max_size - min_size + 1:
        raise ValueError("len(ktable) must be equal to max_size - min_size + 1")

    def pore_transport_rule_name(rule_expression, size):
        # Get ReactionPatterns
        react_p = rule_expression.reactant_pattern
        prod_p = rule_expression.product_pattern
        # Build the label components
        # Pore is always first complex of LHS due to how we build the rules
        subunit = react_p.complex_patterns[0].monomer_patterns[0]
        if len(react_p.complex_patterns) == 2:
            # This is the complexation reaction
            cargo = react_p.complex_patterns[1].monomer_patterns[0]
        else:
            # This is the dissociation reaction
            cargo = prod_p.complex_patterns[1].monomer_patterns[0]
        return '%s_%d_%s' % (_monomer_pattern_label(subunit), size,
                             _monomer_pattern_label(cargo))

    components = ComponentSet()
    # Set up some aliases that are invariant with pore size
    subunit_free = subunit({sc_site: None})
    csource_free = csource({c_site: None})
    # If cdest is actually a variant of csource, we need to explicitly say that
    # it is no longer bound to the pore
    if cdest().monomer is csource().monomer:
        cdest = cdest({c_site: None})

    for size, klist in zip(range(min_size, max_size + 1), ktable):
        # More aliases which do depend on pore size
        pore_free = pore_species(subunit_free, sp_site1, sp_site2, size)

        # This one is a bit tricky. The pore:csource complex must only introduce
        # one additional bond even though there are multiple subunits in the
        # pore. We create partial patterns for bound pore and csource, using a
        # bond number that is high enough not to conflict with the bonds within
        # the pore ring itself.
        # Start by copying pore_free, which has all cargo binding sites empty
        pore_bound = pore_free.copy()
        # Get the next bond number not yet used in the pore structure itself
        cargo_bond_num = size + 1
        # Assign that bond to the first subunit in the pore
        pore_bound.monomer_patterns[0].site_conditions[sc_site] = cargo_bond_num
        # Create a cargo source pattern with that same bond
        csource_bound = csource({c_site: cargo_bond_num})
        # Finally we can define the complex trivially; the bond numbers are
        # already present in the patterns
        pc_complex = pore_bound % csource_bound

        # Create the rules (just like catalyze)
        name_func = functools.partial(pore_transport_rule_name, size=size)
        components |= _macro_rule('pore_transport_complex',
                                  pore_free + csource_free <> pc_complex,
                                  klist[0:2], ['kf', 'kr'],
                                  name_func=name_func)
        components |= _macro_rule('pore_transport_dissociate',
                                  pc_complex >> pore_free + cdest,
                                  [klist[2]], ['kc'],
                                  name_func=name_func)

    return components
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  Source code for pysb.core

import sys
import os
import errno
import warnings
import inspect
import re
import collections
import weakref

def Initial(*args):
    return SelfExporter.default_model.initial(*args)

def MatchOnce(pattern):
    cp = as_complex_pattern(pattern).copy()
    cp.match_once = True
    return cp


# Internal helper to implement the magic of making model components
# appear in the calling module's namespace.  Do not construct any
# instances; we just use the class for namespace containment.
class SelfExporter(object):

    do_export = True
    default_model = None
    target_globals = None   # the globals dict to which we'll export our symbols
    target_module = None    # the module to which we've exported

    @staticmethod
    def export(obj):
        if not SelfExporter.do_export:
            return
        if not isinstance(obj, (Model, Component)):
            raise Exception("%s is not a type that is understood by SelfExporter" % str(type(obj)))

        # determine the module from which we were called (we need to do this here so we can
        # calculate stacklevel for use in the warning at the bottom of this method)
        cur_module = inspect.getmodule(inspect.currentframe())
        caller_frame = inspect.currentframe()
        # walk up through the stack until we hit a different module
        stacklevel = 1
        while inspect.getmodule(caller_frame) == cur_module:
            stacklevel += 1
            caller_frame = caller_frame.f_back

        # use obj's name as the symbol to export it to (unless modified below)
        export_name = obj.name

        if isinstance(obj, Model):
            new_target_module = inspect.getmodule(caller_frame)
            if SelfExporter.default_model is not None \
                    and new_target_module is SelfExporter.target_module:
                warnings.warn("Redefining model! (You can probably ignore this if you are running"
                              " code interactively)", ModelExistsWarning, stacklevel)
                SelfExporter.cleanup()
            SelfExporter.target_module = new_target_module
            SelfExporter.target_globals = caller_frame.f_globals
            SelfExporter.default_model = obj
            # if not set, assign model's name from the module it lives in. very sneaky and fragile.
            if obj.name is None:
                if SelfExporter.target_module == sys.modules['__main__']:
                    # user ran model .py directly
                    model_path = inspect.getfile(sys.modules['__main__'])
                    model_filename = os.path.basename(model_path)
                    module_name = re.sub(r'\.py$', '', model_filename)
                elif SelfExporter.target_module is not None:
                    # model is imported by some other script (typical case)
                    module_name = SelfExporter.target_module.__name__
                else:
                    # user is defining a model interactively (not really supported, but we'll try)
                    module_name = '<interactive>'
                obj.name = module_name   # internal name for identification
                export_name = 'model'    # symbol name for export
        elif isinstance(obj, Component):
            if SelfExporter.default_model == None:
                raise Exception("A Model must be declared before declaring any model components")
            SelfExporter.default_model.add_component(obj)

        # load obj into target namespace under obj.name
        if SelfExporter.target_globals.has_key(export_name):
            warnings.warn("'%s' already defined" % (export_name), SymbolExistsWarning, stacklevel)
        SelfExporter.target_globals[export_name] = obj

    @staticmethod
    def cleanup():
        # delete previously exported symbols
        for name in [c.name for c in SelfExporter.default_model.all_components()] + ['model']:
            if name in SelfExporter.target_globals:
                del SelfExporter.target_globals[name]
        SelfExporter.default_model = None
        SelfExporter.target_globals = None
        SelfExporter.target_module = None

    @staticmethod
    def rename(obj, new_name):
        """Rename a previously exported symbol"""
        if new_name in SelfExporter.target_globals:
            msg = "'%s' already defined" % new_name
            warnings.warn(msg, SymbolExistsWarning, 2)
        if obj.name in SelfExporter.target_globals:
            obj = SelfExporter.target_globals[obj.name]
            SelfExporter.target_globals[new_name] = obj
            del SelfExporter.target_globals[obj.name]
        else:
            raise ValueError("Could not find object in global namespace by its"
                             "name '%s'" % obj.name)


[docs]class Component(object):

    """The base class for all the things contained within a model."""

    def __init__(self, name, _export=True):
        if not re.match(r'[_a-z][_a-z0-9]*\Z', name, re.IGNORECASE):
            raise InvalidComponentNameError(name)
        self.name = name
        self.model = None  # to be set in Model.add_component
        self._export = _export
        if self._export:
            try:
                SelfExporter.export(self)
            except ComponentDuplicateNameError as e:
                # re-raise to hide the stack trace below this point -- it's irrelevant to the user
                # and makes the error harder to understand
                raise e

    def rename(self, new_name):
        self.model._rename_component(self, new_name)
        if self._export:
            SelfExporter.rename(self, new_name)
        self.name = new_name



[docs]class Monomer(Component):

    """Model component representing a protein or other molecule."""

    def __init__(self, name, sites=[], site_states={}, _export=True):
        Component.__init__(self, name, _export)

        # ensure sites is some kind of list (presumably of strings) but not a string itself
        if not isinstance(sites, collections.Iterable) or isinstance(sites, basestring):
            raise ValueError("sites must be a list of strings")
        
        # ensure no duplicate sites
        sites_seen = {}
        for site in sites:
            sites_seen.setdefault(site, 0)
            sites_seen[site] += 1
        sites_dup = [site for site in sites_seen.keys() if sites_seen[site] > 1]
        if sites_dup:
            raise Exception("Duplicate sites specified: " + str(sites_dup))

        # ensure site_states keys are all known sites
        unknown_sites = [site for site in site_states.keys() if not site in sites_seen]
        if unknown_sites:
            raise Exception("Unknown sites in site_states: " + str(unknown_sites))
        # ensure site_states values are all strings
        invalid_sites = [site for (site, states) in site_states.items() if not all([type(s) == str for s in states])]
        if invalid_sites:
            raise Exception("Non-string state values in site_states for sites: " + str(invalid_sites))

        self.sites = list(sites)
        self.sites_dict = dict.fromkeys(sites)
        self.site_states = site_states

    def __call__(self, *args, **kwargs):
        """Build a MonomerPattern object with convenient kwargs for the sites"""
        return MonomerPattern(self, extract_site_conditions(*args, **kwargs), None)

    def __repr__(self):
        return  '%s(name=%s, sites=%s, site_states=%s)' % \
            (self.__class__.__name__, repr(self.name), repr(self.sites), repr(self.site_states))

    


[docs]class MonomerAny(Monomer):

    """
    A wildcard monomer which matches any species.

    This is only needed where you would use a '+' in BNG.
    """

    def __init__(self):
        # don't call Monomer.__init__ since this doesn't want
        # Component stuff and has no user-accessible API
        self.name = 'ANY'
        self.sites = None
        self.sites_dict = {}
        self.site_states = {}
        self.compartment = None

    def __repr__(self):
        return self.name




[docs]class MonomerWild(Monomer):

    """
    A wildcard monomer which matches any species, or nothing (no bond).

    This is only needed where you would use a '?' in BNG.
    """

    def __init__(self):
        # don't call Monomer.__init__ since this doesn't want
        # Component stuff and has no user-accessible API
        self.name = 'WILD'
        self.sites = None
        self.sites_dict = {}
        self.site_states = {}
        self.compartment = None

    def __repr__(self):
        return self.name




[docs]class MonomerPattern(object):

    """A pattern which matches instances of a given monomer, possibly with
    restrictions on the state of certain sites."""

    def __init__(self, monomer, site_conditions, compartment):
        # ensure all keys in site_conditions are sites in monomer
        unknown_sites = [site for site in site_conditions.keys() if site not in monomer.sites_dict]
        if unknown_sites:
            raise Exception("MonomerPattern with unknown sites in " + str(monomer) + ": " + str(unknown_sites))

        # ensure each value is one of: None, integer, list of integers, string, (string,integer), (string,WILD), ANY
        invalid_sites = []
        for (site, state) in site_conditions.items():
            # pass through to next iteration if state type is ok
            if state == None:
                continue
            elif type(state) == int:
                continue
            elif type(state) == list and all(isinstance(s, int) for s in state):
                continue
            elif type(state) == str:
                continue
            elif type(state) == tuple and type(state[0]) == str and (type(state[1]) == int or state[1] == WILD):
                continue
            elif state == ANY:
                continue
            invalid_sites.append(site)
        if invalid_sites:
            raise Exception("Invalid state value for sites: " + '; '.join(['%s=%s' % (s,str(site_conditions[s])) for s in invalid_sites]))

        # ensure compartment is a Compartment
        if compartment and not isinstance(compartment, Compartment):
            raise Exception("compartment is not a Compartment object")

        self.monomer = monomer
        self.site_conditions = site_conditions
        self.compartment = compartment

[docs]    def is_concrete(self):
        """Return a bool indicating whether the pattern is 'concrete'.

        'Concrete' means the pattern satisfies ALL of the following:
        1. All sites have specified conditions
        2. If the model uses compartments, the compartment is specified.
        """
        # 1.
        sites_ok = self.is_site_concrete()
        # 2.
        compartment_ok = not self.monomer.model.compartments or self.compartment
        return compartment_ok and sites_ok


[docs]    def is_site_concrete(self):
        """Return a bool indicating whether the pattern is 'site-concrete'.

        'Site-concrete' means all sites have specified conditions."""
        # assume __init__ did a thorough enough job of error checking that this is is all we need to do
        return len(self.site_conditions) == len(self.monomer.sites)


    def __call__(self, *args, **kwargs):
        """Build a new MonomerPattern with updated site conditions. Can be used
        to obtain a shallow copy by passing an empty argument list."""
        # The new object will have references to the original monomer and
        # compartment, and a shallow copy of site_conditions which has been
        # updated according to our args (as in Monomer.__call__).
        site_conditions = self.site_conditions.copy()
        site_conditions.update(extract_site_conditions(*args, **kwargs))
        return MonomerPattern(self.monomer, site_conditions, self.compartment)

    def __add__(self, other):
        if isinstance(other, MonomerPattern):
            return ReactionPattern([ComplexPattern([self], None), ComplexPattern([other], None)])
        if isinstance(other, ComplexPattern):
            return ReactionPattern([ComplexPattern([self], None), other])
        else:
            return NotImplemented

    def __mod__(self, other):
        if isinstance(other, MonomerPattern):
            return ComplexPattern([self, other], None)
        else:
            return NotImplemented

    def __rshift__(self, other):
        if isinstance(other, (MonomerPattern, ComplexPattern, ReactionPattern)):
            return RuleExpression(self, other, False)
        elif other is None:
            return RuleExpression(self, ReactionPattern([]), False)
        else:
            return NotImplemented

    def __rrshift__(self, other):
        if other is None:
            return RuleExpression(ReactionPattern([]), self, False)
        else:
            return NotImplemented

    def __ne__(self, other):
        if isinstance(other, (MonomerPattern, ComplexPattern, ReactionPattern)):
            return RuleExpression(self, other, True)
        else:
            return NotImplemented

    def __pow__(self, other):
        if isinstance(other, Compartment):
            mp_new = self()
            mp_new.compartment = other
            return mp_new
        else:
            return NotImplemented

    def __repr__(self):
        value = '%s(' % self.monomer.name
        value += ', '.join([
                k + '=' + str(self.site_conditions[k])
                for k in self.monomer.sites
                if self.site_conditions.has_key(k)
                ])
        value += ')'
        if self.compartment is not None:
            value += ' ** ' + self.compartment.name
        return value




[docs]class ComplexPattern(object):

    """
    A bound set of MonomerPatterns, i.e. a pattern to match a complex.

    In BNG terms, a list of patterns combined with the '.' operator.
    """

    def __init__(self, monomer_patterns, compartment, match_once=False):
        # ensure compartment is a Compartment
        if compartment and not isinstance(compartment, Compartment):
            raise Exception("compartment is not a Compartment object")

        self.monomer_patterns = monomer_patterns
        self.compartment = compartment
        self.match_once = match_once

[docs]    def is_concrete(self):
        """Return a bool indicating whether the pattern is 'concrete'.

        'Concrete' means the pattern satisfies ANY of the following:
        1. All monomer patterns are concrete
        2. The compartment is specified AND all monomer patterns are site-concrete
        """
        # 1.
        mp_concrete_ok = all(mp.is_concrete() for mp in self.monomer_patterns)
        # 2.
        compartment_ok = self.compartment is not None and \
            all(mp.is_site_concrete() for mp in self.monomer_patterns)
        return mp_concrete_ok or compartment_ok


[docs]    def is_equivalent_to(self, other):
        """Checks for equality with another ComplexPattern"""
        # Didn't implement __eq__ to avoid confusion with __ne__ operator used for Rule building

        # FIXME the literal site_conditions comparison requires bond numbering to be identical,
        #   so some sort of canonicalization of that numbering is necessary.
        if not isinstance(other, ComplexPattern):
            raise Exception("Can only compare ComplexPattern to another ComplexPattern")
        return \
            sorted((mp.monomer, mp.site_conditions) for mp in self.monomer_patterns) == \
            sorted((mp.monomer, mp.site_conditions) for mp in other.monomer_patterns)


[docs]    def copy(self):
        """
        Implement our own brand of shallow copy.

        The new object will have references to the original compartment, and
        copies of the monomer_patterns.
        """
        return ComplexPattern([mp() for mp in self.monomer_patterns], self.compartment, self.match_once)


    def __add__(self, other):
        if isinstance(other, ComplexPattern):
            return ReactionPattern([self, other])
        elif isinstance(other, MonomerPattern):
            return ReactionPattern([self, ComplexPattern([other], None)])
        else:
            return NotImplemented

    def __mod__(self, other):
        if isinstance(other, MonomerPattern):
            return ComplexPattern(self.monomer_patterns + [other], self.compartment, self.match_once)
        elif isinstance(other, ComplexPattern):
            if self.compartment is not other.compartment:
                raise ValueError("merged ComplexPatterns must specify the same compartment")
            elif self.match_once != other.match_once:
                raise ValueError("merged ComplexPatterns must have the same value of match_once")
            return ComplexPattern(self.monomer_patterns + other.monomer_patterns, self.compartment, self.match_once)
        else:
            return NotImplemented

    def __rshift__(self, other):
        if isinstance(other, (MonomerPattern, ComplexPattern, ReactionPattern)):
            return RuleExpression(self, other, False)
        elif other is None:
            return RuleExpression(self, ReactionPattern([]), False)
        else:
            return NotImplemented

    def __rrshift__(self, other):
        if other is None:
            return RuleExpression(ReactionPattern([]), self, False)
        else:
            return NotImplemented

    def __ne__(self, other):
        if isinstance(other, (MonomerPattern, ComplexPattern, ReactionPattern)):
            return RuleExpression(self, other, True)
        else:
            return NotImplemented

    def __pow__(self, other):
        if isinstance(other, Compartment):
            cp_new = self.copy()
            cp_new.compartment = other
            return cp_new
        else:
            return NotImplemented

    def __repr__(self):
        ret = ' % '.join([repr(p) for p in self.monomer_patterns])
        if self.compartment is not None:
            ret = '(%s) ** %s' % (ret, self.compartment.name)
        if self.match_once:
            ret = 'MatchOnce(%s)' % ret
        return ret




[docs]class ReactionPattern(object):

    """
    A pattern for the entire product or reactant side of a rule.

    Essentially a thin wrapper around a list of ComplexPatterns. In BNG terms, a
    list of complex patterns combined with the '+' operator.

    """

    def __init__(self, complex_patterns):
        self.complex_patterns = complex_patterns

    def __add__(self, other):
        if isinstance(other, MonomerPattern):
            return ReactionPattern(self.complex_patterns + [ComplexPattern([other], None)])
        elif isinstance(other, ComplexPattern):
            return ReactionPattern(self.complex_patterns + [other])
        else:
            return NotImplemented

    def __rshift__(self, other):
        """Irreversible reaction"""
        if isinstance(other, (MonomerPattern, ComplexPattern, ReactionPattern)):
            return RuleExpression(self, other, False)
        elif other is None:
            return RuleExpression(self, ReactionPattern([]), False)
        else:
            return NotImplemented

    def __rrshift__(self, other):
        if other is None:
            return RuleExpression(ReactionPattern([]), self, False)
        else:
            return NotImplemented

    def __ne__(self, other):
        """Reversible reaction"""
        if isinstance(other, (MonomerPattern, ComplexPattern, ReactionPattern)):
            return RuleExpression(self, other, True)
        elif other is None:
            return RuleExpression(self, ReactionPattern([]), True)
        else:
            return NotImplemented

    def __repr__(self):
        if len(self.complex_patterns):
            return ' + '.join([repr(p) for p in self.complex_patterns])
        else:
            return 'None'




[docs]class RuleExpression(object):

    """
    A container for the reactant and product patterns of a rule expression.

    Contains one ReactionPattern for each of reactants and products, and a
    boolean indicating reversibility. This is a temporary object used to
    implement syntactic sugar through operator overloading. The Rule constructor
    takes an instance of this class as its first argument, but simply extracts
    its fields and discards the object itself.

    """

    def __init__(self, reactant_pattern, product_pattern, is_reversible):
        try:
            self.reactant_pattern = as_reaction_pattern(reactant_pattern)
        except InvalidReactionPatternException as e:
            raise type(e)("Reactant does not look like a reaction pattern")
        try:
            self.product_pattern = as_reaction_pattern(product_pattern)
        except InvalidReactionPatternException as e:
            raise type(e)("Product does not look like a reaction pattern")
        self.is_reversible = is_reversible

    def __repr__(self):
        operator = '<>' if self.is_reversible else '>>'
        return '%s %s %s' % (repr(self.reactant_pattern), operator,
                             repr(self.product_pattern))



[docs]def as_complex_pattern(v):
    """Internal helper to 'upgrade' a MonomerPattern to a ComplexPattern."""
    if isinstance(v, ComplexPattern):
        return v
    elif isinstance(v, MonomerPattern):
        return ComplexPattern([v], None)
    else:
        raise InvalidComplexPatternException



[docs]def as_reaction_pattern(v):
    """Internal helper to 'upgrade' a Complex- or MonomerPattern to a
    complete ReactionPattern."""
    if isinstance(v, ReactionPattern):
        return v
    else:
        try:
            return ReactionPattern([as_complex_pattern(v)])
        except InvalidComplexPatternException:
            raise InvalidReactionPatternException




[docs]class Parameter(Component):

    """
    Model component representing a named constant floating point number.

    Parameters are used as reaction rate constants, compartment volumes and
    initial (boundary) conditions for species.
    """

    def __init__(self, name, value=0.0, _export=True):
        Component.__init__(self, name, _export)
        self.value = value

    def __repr__(self):
        return  '%s(name=%s, value=%s)' % (self.__class__.__name__, repr(self.name), repr(self.value))




[docs]class Compartment(Component):
    """Model component representing a bounded reaction volume."""

    def __init__(self, name, parent=None, dimension=3, size=None, _export=True):
        """
        Requires name, accepts optional parent, dimension and size. name is a
        string. parent should be the parent compartment, except for the root
        compartment which should omit the parent argument. dimension may be 2
        (for membranes) or 3 (for volumes). size is a parameter which defines
        the compartment volume (the appropriate units will depend on the units
        of the reaction rate constants).

        Examples:
        Compartment('cytosol', dimension=3, size=cyto_vol, parent=ec_membrane)
        """

        Component.__init__(self, name, _export)

        if parent != None and isinstance(parent, Compartment) == False:
            raise Exception("parent must be a predefined Compartment or None")
        #FIXME: check for only ONE "None" parent? i.e. only one compartment can have a parent None?

        if size is not None and not isinstance(size, Parameter):
            raise Exception("size must be a parameter (or omitted)")

        self.parent = parent
        self.dimension = dimension
        self.size = size

    def __repr__(self):
        return  '%s(name=%s, parent=%s, dimension=%s, size=%s)' % \
            (self.__class__.__name__, repr(self.name), repr(self.parent), repr(self.dimension), repr(self.size))




class Rule(Component):

    def __init__(self, name, rule_expression, rate_forward, rate_reverse=None,
                 delete_molecules=False, move_connected=False,
                 _export=True):
        Component.__init__(self, name, _export)
        if not isinstance(rule_expression, RuleExpression):
            raise Exception("rule_expression is not a RuleExpression object")
        if not isinstance(rate_forward, Parameter):
            raise Exception("Forward rate must be a Parameter")
        if rule_expression.is_reversible and not isinstance(rate_reverse, Parameter):
            raise Exception("Reverse rate must be a Parameter")
        self.reactant_pattern = rule_expression.reactant_pattern
        self.product_pattern = rule_expression.product_pattern
        self.is_reversible = rule_expression.is_reversible
        self.rate_forward = rate_forward
        self.rate_reverse = rate_reverse
        self.delete_molecules = delete_molecules
        self.move_connected = move_connected
        # TODO: ensure all numbered sites are referenced exactly twice within each of reactants and products

    def is_synth(self):
        return len(self.reactant_pattern.complex_patterns) == 0

    def is_deg(self):
        return len(self.product_pattern.complex_patterns) == 0

    def __repr__(self):
        ret = '%s(name=%s, reactants=%s, products=%s, rate_forward=%s' % \
            (self.__class__.__name__, repr(self.name), repr(self.reactant_pattern), repr(self.product_pattern), repr(self.rate_forward))
        if self.is_reversible:
            ret += ', rate_reverse=%s' % repr(self.rate_reverse)
        if self.delete_molecules:
            ret += ', delete_molecules=True'
        if self.move_connected:
            ret += ', move_connected=True'
        ret += ')'
        return ret



[docs]class Observable(Component):

    """
    Model component representing a linear combination of species.

    May be used in rate law expressions.
    """

    def __init__(self, name, reaction_pattern, _export=True):
        try:
            reaction_pattern = as_reaction_pattern(reaction_pattern)
        except InvalidReactionPatternException as e:
            raise type(e)("Observable pattern does not look like a ReactionPattern")
        Component.__init__(self, name, _export)
        self.reaction_pattern = reaction_pattern
        self.species = []
        self.coefficients = []

    def __repr__(self):
        ret = '%s(%s, %s)' % (self.__class__.__name__, repr(self.name),
                              repr(self.reaction_pattern))
        return ret




[docs]class Model(object):

    """Container for monomers, compartments, parameters, and rules."""

    _component_types = (Monomer, Compartment, Parameter, Rule, Observable)

    def __init__(self, name=None, _export=True):
        self.name = name
        self.monomers = ComponentSet()
        self.compartments = ComponentSet()
        self.parameters = ComponentSet()
        self.rules = ComponentSet()
        self.observables = ComponentSet()
        self.species = []
        self.odes = []
        self.reactions = []
        self.reactions_bidirectional = []
        self.initial_conditions = []
        self._export = _export
        if self._export:
            SelfExporter.export(self)

    def reload(self):
        # forcibly removes the .pyc file and reloads the model module
        model_pyc = SelfExporter.target_module.__file__
        if model_pyc[-3:] == '.py':
            model_pyc += 'c'
        try:
            os.unlink(model_pyc)
        except OSError as e:
            # ignore "no such file" errors, re-raise the rest
            if e.errno != errno.ENOENT:
                raise
        try:
            reload(SelfExporter.target_module)
        except SystemError as e:
            # This one specific SystemError occurs when using ipython to 'run' a model .py file
            # directly, then reload()ing the model, which makes no sense anyway. (just re-run it)
            if e.args == ('nameless module',):
                raise Exception('Cannot reload a model which was executed directly in an interactive'
                                'session. Please import the model file as a module instead.')
            else:
                raise
        # return self for "model = model.reload()" idiom, until a better solution can be found
        return SelfExporter.default_model

[docs]    def all_component_sets(self):
        """Return a list of all ComponentSet objects"""
        set_names = [t.__name__.lower() + 's' for t in Model._component_types]
        sets = [getattr(self, name) for name in set_names]
        return sets


    def all_components(self):
        cset_all = ComponentSet()
        for cset in self.all_component_sets():
            cset_all |= cset
        return cset_all

[docs]    def parameters_rules(self):
        """Returns a ComponentSet of the parameters used as rate constants in rules"""
        # rate_reverse is None for irreversible rules, so we'll need to filter those out
        cset = ComponentSet(p for r in self.rules for p in (r.rate_forward, r.rate_reverse)
                            if p is not None)
        # intersect with original parameter list to retain ordering
        return self.parameters & cset


[docs]    def parameters_initial_conditions(self):
        """Returns a ComponentSet of the parameters used as initial conditions"""
        cset = ComponentSet(ic[1] for ic in self.initial_conditions)
        # intersect with original parameter list to retain ordering
        return self.parameters & cset


[docs]    def parameters_compartments(self):
        """Returns a ComponentSet of the parameters used as compartment sizes"""
        cset = ComponentSet(c.size for c in self.compartments)
        # intersect with original parameter list to retain ordering
        return self.parameters & cset


[docs]    def parameters_unused(self):
        """Returns a ComponentSet of the parameters not used in the model at all"""
        cset_used = self.parameters_rules() | self.parameters_initial_conditions() | self.parameters_compartments()
        return self.parameters - cset_used


    def add_component(self, other):
        # We have a container for each type of component. This code determines
        # the right one based on the class of the object being added.
        for t, cset in zip(Model._component_types, self.all_component_sets()):
            if isinstance(other, t):
                cset.add(other)
                other.model = weakref.proxy(self)
                break
        else:
            raise Exception("Tried to add component of unknown type '%s' to"
                            "model" % type(other))

    def _rename_component(self, component, new_name):
        for cset in self.all_component_sets():
            if component in cset:
                cset.rename(component, new_name)

    def initial(self, complex_pattern, value):
        try:
            complex_pattern = as_complex_pattern(complex_pattern)
        except InvalidComplexPatternException as e:
            raise type(e)("Initial condition species does not look like a ComplexPattern")
        if not isinstance(value, Parameter):
            raise Exception("Value must be a Parameter")
        if not complex_pattern.is_concrete():
            raise Exception("Pattern must be concrete")
        if any(complex_pattern.is_equivalent_to(other_cp) for other_cp, value in self.initial_conditions):
            # FIXME until we get proper canonicalization this could produce false negatives
            raise Exception("Duplicate initial condition")
        self.initial_conditions.append( (complex_pattern, value) )

    def get_species_index(self, complex_pattern):
        # FIXME I don't even want to think about the inefficiency of this, but at least it works
        try:
            return (i for i, s_cp in enumerate(self.species) if s_cp.is_equivalent_to(complex_pattern)).next()
        except StopIteration:
            return None

[docs]    def has_synth_deg(self):
        """Return true if model uses synthesis or degradation reactions."""
        return any(r.is_synth() or r.is_deg() for r in self.rules)


[docs]    def enable_synth_deg(self):
        """Add components needed to support synthesis and degradation rules."""
        if self.monomers.get('__source') is None:
            self.add_component(Monomer('__source', _export=False))
        if self.monomers.get('__sink') is None:
            self.add_component(Monomer('__sink', _export=False))
        if self.parameters.get('__source_0') is None:
            self.add_component(Parameter('__source_0', 1.0, _export=False))

        source_cp = as_complex_pattern(self.monomers['__source']())
        if not any(source_cp.is_equivalent_to(other_cp) for other_cp, value in self.initial_conditions):
            self.initial(source_cp, self.parameters['__source_0'])


[docs]    def reset_equations(self):
        """Clear out anything generated by bng.generate_equations or the like"""
        self.species = []
        self.odes = []
        self.reactions = []
        self.reactions_bidirectional = []
        for obs in self.observables:
            obs.species = []
            obs.coefficients = []


    def __repr__(self):
        return "<%s '%s' (monomers: %d, rules: %d, parameters: %d, compartments: %d) at 0x%x>" % \
            (self.__class__.__name__, self.name, len(self.monomers), len(self.rules),
             len(self.parameters), len(self.compartments), id(self))




class InvalidComplexPatternException(Exception):
    pass

class InvalidReactionPatternException(Exception):
    pass

[docs]class ModelExistsWarning(UserWarning):
    """Issued by Model constructor when a second model is defined."""
    pass


[docs]class SymbolExistsWarning(UserWarning):
    """Issued by model component constructors when a name is reused."""
    pass


[docs]class InvalidComponentNameError(ValueError):
    """Issued by Component.__init__ when the given name is not valid."""
    def __init__(self, name):
        ValueError.__init__(self, "Not a valid component name: '%s'" % name)




[docs]class ComponentSet(collections.Set, collections.Mapping, collections.Sequence):
    """An add-and-read-only container for storing model Components. It behaves mostly like an
    ordered set, but components can also be retrieved by name *or* index by using the [] operator
    (like a dict or list). Components may not be removed or replaced."""
    # The implementation is based on a list instead of a linked list (as OrderedSet is), since we
    # only allow add and retrieve, not delete.

    def __init__(self, iterable=[]):
        self._elements = []
        self._map = {}
        self._index_map = {}
        for value in iterable:
            self.add(value)

    def __iter__(self):
        return iter(self._elements)

    def __contains__(self, c):
        if not isinstance(c, Component):
            raise TypeError("Can only work with Components, got a %s" % type(c))
        return c.name in self._map and self[c.name] is c

    def __len__(self):
        return len(self._elements)

    def add(self, c):
        if c not in self:
            if c.name in self._map:
                raise ComponentDuplicateNameError("Tried to add a component with a duplicate name: %s" % c.name)
            self._elements.append(c)
            self._map[c.name] = c
            self._index_map[c.name] = len(self._elements) - 1

    def __getitem__(self, key):
        # Must support both Sequence and Mapping behavior. This means stringified integer Mapping
        # keys (like "0") are forbidden, but since all Component names must be valid Python
        # identifiers, integers are ruled out anyway.
        if isinstance(key, int) or isinstance(key, long):
            return self._elements[key]
        else:
            return self._map[key]

    def get(self, key, default=None):
        if isinstance(key, (int, long)):
            raise ValueError("Get is undefined for integer arguments, use [] instead")
        try:
            return self[key]
        except KeyError:
            return default

    def iterkeys(self):
        for c in self:
            yield c.name

    def itervalues(self):
        return self.__iter__()

    def iteritems(self):
        for c in self:
            yield (c.name, c)

    def keys(self):
        return [c.name for c in self]

    def values(self):
        return [c for c in self]

    def items(self):
        return zip(self.keys(), self)

    # We can implement this in O(1) ourselves, whereas the Sequence mixin
    # implements it in O(n).
    def index(self, c):
        if not c in self:
            raise ValueError
        return self._index_map[c.name]

    # We reimplement this because collections.Set's __and__ mixin iterates over other, not
    # self. That implementation ends up retaining the ordering of other, but we'd like to keep the
    # ordering of self instead. We require other to be a ComponentSet too so we know it will support
    # "in" efficiently.
    def __and__(self, other):
        if not isinstance(other, ComponentSet):
            return collections.Set.__and__(self, other)
        return ComponentSet(value for value in self if value in other)

    def __rand__(self, other):
        return self.__and__(other)

    def __ror__(self, other):
        return self.__or__(other)

    def __rxor__(self, other):
        return self.__xor__(other)

    def __repr__(self):
        return '{' + \
            ',\n '.join("'%s': %s" % t for t in self.iteritems()) + \
            '}'

[docs]    def rename(self, c, new_name):
        """Change a component's name in our data structures"""
        for m in self._map, self._index_map:
            m[new_name] = m[c.name]
            del m[c.name]




[docs]class ComponentDuplicateNameError(ValueError):
    """Issued by ComponentSet.add when a component is added with the
    same name as an existing one."""
    pass



[docs]def extract_site_conditions(*args, **kwargs):
    """Handle parsing of MonomerPattern site conditions.
    """
    # enforce site conditions as kwargs or a dict but not both
    if (args and kwargs) or len(args) > 1:
        raise Exception("Site conditions may be specified as EITHER keyword arguments OR a single dict")
    # handle normal cases
    elif args:
        site_conditions = args[0].copy()
    else:
        site_conditions = kwargs
    return site_conditions




ANY = MonomerAny()
WILD = MonomerWild()

warnings.simplefilter('always', ModelExistsWarning)
warnings.simplefilter('always', SymbolExistsWarning)
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